Carbon-nanotube field-effect transistors for resolving single-molecule aptamer–ligand binding kinetics - Nature Nanotechnology

Carbon-nanotube field-effect transistors for resolving single-molecule aptamer–ligand binding kinetics – Nature Nanotechnology

Source Node: 3067390
  • Meneses, A. & Liy-Salmeron, G. Serotonin and emotion, learning and memory. Rev. Neurosci. 23, 543–553 (2012).

    Article  CAS  Google Scholar 

  • Barandouzi, Z. A. et al. Associations of neurotransmitters and the gut microbiome with emotional distress in mixed type of irritable bowel syndrome. Sci. Rep. 12, 1648 (2022).

    Article  CAS  Google Scholar 

  • Li, J. et al. A tissue-like neurotransmitter sensor for the brain and gut. Nature 606, 94–101 (2022).

    Article  CAS  Google Scholar 

  • O’Donnell, M. P. et al. A neurotransmitter produced by gut bacteria modulates host sensory behaviour. Nature 583, 415–420 (2020).

    Article  Google Scholar 

  • Hendrickx, S. et al. A sensitive capillary LC-UV method for the simultaneous analysis of olanzapine, chlorpromazine and their FMO-mediated N-oxidation products in brain microdialysates. Talanta 162, 268–277 (2017).

    Article  CAS  Google Scholar 

  • Qiao, J. P. et al. Microdialysis combined with liquid chromatography–tandem mass spectrometry for the determination of 6-aminobutylphthalide and its main metabolite in the brains of awake freely-moving rats. J. Chromatogr. B 805, 93–99 (2004).

    Article  CAS  Google Scholar 

  • Roberts, J. G. & Sombers, L. A. Fast-scan cyclic voltammetry: chemical sensing in the brain and beyond. Anal. Chem. 90, 490–504 (2018).

    Article  CAS  Google Scholar 

  • Weese, M. E., Krevh, R. A., Li, Y., Alvarez, N. T. & Ross, A. E. Defect sites modulate fouling resistance on carbon-nanotube fiber electrodes. ACS Sens. 4, 1001–1007 (2019).

    Article  CAS  Google Scholar 

  • Dunham, K. E. & Venton, B. J. Improving serotonin fast-scan cyclic voltammetry detection: new waveforms to reduce electrode fouling. Analyst 145, 7437–7446 (2020).

    Article  CAS  Google Scholar 

  • Njagi, J., Chernov, M. M., Leiter, J. & Andreescu, S. Amperometric detection of dopamine in vivo with an enzyme based carbon fiber microbiosensor. Anal. Chem. 82, 989–996 (2010).

    Article  CAS  Google Scholar 

  • Schmidt, A. C., Wang, X., Zhu, Y. & Sombers, L. A. Carbon nanotube yarn electrodes for enhanced detection of neurotransmitter dynamics in live brain tissue. ACS Nano 7, 7864–7873 (2013).

    Article  CAS  Google Scholar 

  • Lugo-Morales, L. Z. et al. Enzyme-modified carbon-fiber microelectrode for the quantification of dynamic fluctuations of nonelectroactive analytes using fast-scan cyclic voltammetry. Anal. Chem. 85, 8780–8786 (2013).

    Article  CAS  Google Scholar 

  • Yang, C., Trikantzopoulos, E., Jacobs, C. B. & Venton, B. J. Evaluation of carbon nanotube fiber microelectrodes for neurotransmitter detection: correlation of electrochemical performance and surface properties. Anal. Chim. Acta 965, 1–8 (2017).

    Article  CAS  Google Scholar 

  • Meunier, C. J., McCarty, G. S. & Sombers, L. A. Drift subtraction for fast-scan cyclic voltammetry using double-waveform partial-least-squares regression. Anal. Chem. 91, 7319–7327 (2019).

    Article  CAS  Google Scholar 

  • Sabatini, B. L. & Tian, L. Imaging neurotransmitter and neuromodulator dynamics in vivo with genetically encoded indicators. Neuron 108, 17–32 (2020).

    Article  CAS  Google Scholar 

  • Liu, C. et al. A wireless, implantable optoelectrochemical probe for optogenetic stimulation and dopamine detection. Microsyst. Nanoeng. 6, 64 (2020).

    Article  CAS  Google Scholar 

  • Boyden, E. et al. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268 (2005).

    Article  CAS  Google Scholar 

  • Yizhar, O., Fenno, L. E., Davidson, T. J., Mogri, M. & Deisseroth, K. Optogenetics in neural systems. Neuron 71, 9–34 (2011).

    Article  CAS  Google Scholar 

  • Patriarchi, T. et al. Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. Science 360, eaat4422 (2018).

    Article  Google Scholar 

  • Stern, E. et al. Importance of the Debye screening length on nanowire field effect transistor sensors. Nano Lett. 7, 3405–3409 (2007).

    Article  CAS  Google Scholar 

  • Poghossian, A., Cherstvy, A., Ingebrandt, S., Offenhäusser, A. & Schöning, M. J. Possibilities and limitations of label-free detection of DNA hybridization with field-effect-based devices. Sens. Actuators B 111, 470–480 (2005).

    Article  Google Scholar 

  • Nakatsuka, N. et al. Aptamer-field-effect transistors overcome Debye length limitations for small-molecule sensing. Science 362, 319–324 (2018).

    Article  CAS  Google Scholar 

  • Zhao, C. et al. Implantable aptamer-field-effect transistor neuroprobes for in vivo neurotransmitter monitoring. Sci. Adv. 7, eabj7422 (2021).

    Article  CAS  Google Scholar 

  • Vu, C. A. & Chen, W. Y. Predicting future prospects of aptamers in field-effect transistor biosensors. Molecules 25, 680 (2020).

    Article  CAS  Google Scholar 

  • Miyakawa, N. et al. Drift suppression of solution-gated graphene field-effect transistors by cation doping for sensing platforms. Sensors 21, 7455 (2021).

    Article  CAS  Google Scholar 

  • Vernick, S. et al. Electrostatic melting in a single-molecule field-effect transistor with applications in genomic identification. Nat. Commun. 8, 15450 (2017).

    Article  CAS  Google Scholar 

  • Sorgenfrei, S. et al. Label-free single-molecule detection of DNA-hybridization kinetics with a carbon nanotube field-effect transistor. Nat. Nanotechnol. 6, 126–132 (2011).

    Article  CAS  Google Scholar 

  • Chatterjee, T. et al. Direct kinetic fingerprinting and digital counting of single protein molecules. Proc. Natl Acad. Sci. USA 117, 22815–22822 (2020).

    Article  CAS  Google Scholar 

  • Roy, R., Hohng, S. & Ha, T. A practical guide to single-molecule FRET. Nat. Methods 5, 507–516 (2008).

    Article  CAS  Google Scholar 

  • Durham, R. J., Latham, D. R., Sanabria, H. & Jayaraman, V. Structural dynamics of glutamate signaling systems by smFRET. Biophys. J. 119, 1929–1936 (2020).

    Article  CAS  Google Scholar 

  • Fuller, C. W. et al. Molecular electronics sensors on a scalable semiconductor chip: a platform for single-molecule measurement of binding kinetics and enzyme activity. Proc. Natl Acad. Sci. USA 119, e2112812119 (2022).

    Article  CAS  Google Scholar 

  • Lee, Y. et al. Electrically controllable single-point covalent functionalization of spin-cast carbon-nanotube field-effect transistor arrays. ACS Nano 12, 9922–9930 (2018).

    Article  CAS  Google Scholar 

  • Wilson, H. et al. Electrical monitoring of sp3 defect formation in individual carbon nanotubes. J. Phys. Chem. C. 120, 1971–1976 (2016).

    Article  CAS  Google Scholar 

  • Sharf, T. et al. Single electron charge sensitivity of liquid-gated carbon nanotube transistors. Nano Lett. 14, 4925–4930 (2014).

    Article  CAS  Google Scholar 

  • Shkodra, B. et al. Electrolyte-gated carbon nanotube field-effect transistor-based biosensors: principles and applications. Appl. Phys. Rev. 8, 041325 (2021).

    Article  CAS  Google Scholar 

  • Kwon, J., Lee, Y., Lee, T. & Ahn, J. H. Aptamer-based field-effect transistor for detection of avian influenza virus in chicken serum. Anal. Chem. 92, 5524–5531 (2020).

    Article  CAS  Google Scholar 

  • Singh, N. K., Thungon, P. D., Estrela, P. & Goswami, P. Development of an aptamer-based field effect transistor biosensor for quantitative detection of Plasmodium falciparum glutamate dehydrogenase in serum samples. Biosens. Bioelectron. 123, 30–35 (2019).

    Article  CAS  Google Scholar 

  • Cheung, K. M. et al. Phenylalanine monitoring via aptamer-field-effect transistor sensors. ACS Sens. 4, 3308–3317 (2019).

    Article  CAS  Google Scholar 

  • Ortiz-Medina, J. et al. Differential response of doped/defective graphene and dopamine to electric fields: a density functional theory study. J. Phys. Chem. C 119, 13972–13978 (2015).

    Article  CAS  Google Scholar 

  • Nakatsuka, N. et al. Aptamer conformational change enables serotonin biosensing with nanopipettes. Anal. Chem. 93, 4033–4041 (2021).

    Article  CAS  Google Scholar 

  • Schmid, S., Götz, M. & Hugel, T. Single-molecule analysis beyond dwell times: demonstration and assessment in and out of equilibrium. Biophys. J. 111, 1375–1384 (2016).

    Article  CAS  Google Scholar 

  • Steffen, F. D. et al. Metal ions and sugar puckering balance single-molecule kinetic heterogeneity in RNA and DNA tertiary contacts. Nat. Commun. 11, 104 (2020).

    Article  CAS  Google Scholar 

  • Jarmoskaite, I., AlSadhan, I., Vaidyanathan, P. P. & Herschlag, D. How to measure and evaluate binding affinities. eLife 9, e57264 (2020).

    Article  CAS  Google Scholar 

  • Song, G. et al. Light-up aptameric sensor of serotonin for point-of-care use. Anal. Chem. 95, 9076–9082 (2023).

    Article  CAS  Google Scholar 

  • de la Faverie, A. R., Guedin, A., Bedrat, A., Yatsunyk, L. A. & Mergny, J. L. Thioflavin T as a fluorescence light-up probe for G4 formation. Nucleic Acids Res. 42, e65 (2014).

    Article  Google Scholar 

  • Meng, S., Maragakis, P., Papaloukas, C. & Kaxiras, E. DNA nucleoside interaction and identification with carbon nanotubes. Nano Lett. 7, 45–50 (2007).

    Article  CAS  Google Scholar 

  • Zhao, X. & Johnson, J. K. Simulation of adsorption of DNA on carbon nanotubes. J. Am. Chem. Soc. 129, 10438–10445 (2007).

    Article  CAS  Google Scholar 

  • Yu, H., Alkhamis, O., Canoura, J., Liu, Y. & Xiao, Y. Advances and challenges in small‐molecule DNA aptamer isolation, characterization, and sensor development. Angew. Chem. Int. Ed. 60, 16800–16823 (2021).

    Article  CAS  Google Scholar 

  • Warren, S. B., Vernick, S., Romano, E. & Shepard, K. L. Complementary metal-oxide-semiconductor integrated carbon nanotube arrays: toward wide-bandwidth single-molecule sensing systems. Nano Lett. 16, 2674–2679 (2016).

    Article  CAS  Google Scholar 

  • Bouilly, D. et al. Single-molecule reaction chemistry in patterned nanowells. Nano Lett. 16, 4679–4685 (2016).

    Article  CAS  Google Scholar 

  • Eilers, P. H. A perfect smoother. Anal. Chem. 75, 3631–3636 (2003).

    Article  CAS  Google Scholar 

  • Sigworth, F. & Sine, S. Data transformations for improved display and fitting of single-channel dwell time histograms. Biophys. J. 52, 1047–1054 (1987).

    Article  CAS  Google Scholar 

  • Time Stamp:

    More from Nature Nanotechnology