Inhibition of acute complement responses towards bolus-injected nanoparticles using targeted short-circulating regulatory proteins - Nature Nanotechnology

Inhibition of acute complement responses towards bolus-injected nanoparticles using targeted short-circulating regulatory proteins – Nature Nanotechnology

Source Node: 2922330
  • La-Beck, N. M., Islam, M. R. & Markiewski, M. M. Nanoparticle-induced complement activation: implications for cancer nanomedicine. Front. Immunol. 11, 603039 (2020).

    Article  CAS  Google Scholar 

  • Moghimi, S. M., Simberg, D., Papini, E. & Farhangrazi, Z. S. Complement activation by drug carriers and particulate pharmaceuticals: principles, challenges and opportunities. Adv. Drug Deliv. Rev. 157, 83–95 (2020).

    Article  CAS  Google Scholar 

  • Ricklin, D., Hajishengallis, G., Yang, K. & Lambris, J. D. Complement: a key system for immune surveillance and homeostasis. Nat. Immunol. 11, 785–797 (2010).

    Article  CAS  Google Scholar 

  • Szebeni, J., Simberg, D., Gonzalez-Fernandez, A., Barenholz, Y. & Dobrovolskaia, M. A. Roadmap and strategy for overcoming infusion reactions to nanomedicines. Nat. Nanotechnol. 13, 1100–1108 (2018).

    Article  CAS  Google Scholar 

  • Moghimi, S. M. et al. Material properties in complement activation. Adv. Drug Deliv. Rev. 63, 1000–1007 (2011).

    Article  CAS  Google Scholar 

  • Tavano, R. et al. C1q-mediated complement activation and C3 opsonization trigger recognition of stealth poly(2-methyl-2-oxazoline)-coated cilica nanoparticles by human phagocytes. ACS Nano 12, 5834–5847 (2018).

    Article  CAS  Google Scholar 

  • Inturi, S. et al. Modulatory role of surface coating of superparamagnetic iron oxide nanoworms in complement opsonization and leukocyte pptake. ACS Nano 9, 10758–10768 (2015).

    Article  CAS  Google Scholar 

  • Dobrovolskaia, M. A., Aggarwal, P., Hall, J. B. & McNeil, S. E. Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution. Mol. Pharm. 5, 487–495 (2008).

    Article  CAS  Google Scholar 

  • Ricklin, D. & Lambris, J. D. Complement in immune and inflammatory disorders: pathophysiological mechanisms. J. Immunol. 190, 3831–3838 (2013).

    Article  CAS  Google Scholar 

  • Moghimi, S. M. Cancer nanomedicine and the complement system activation paradigm: anaphylaxis and tumour growth. J. Control. Release 190, 556–562 (2014).

    Article  CAS  Google Scholar 

  • Forneris, F. et al. Regulators of complement activity mediate inhibitory mechanisms through a common C3b-binding mode. EMBO J. 35, 1133–1149 (2016).

    Article  CAS  Google Scholar 

  • Schmidt, C. Q., Lambris, J. D. & Ricklin, D. Protection of host cells by complement regulators. Immunol. Rev. 274, 152–171 (2016).

    Article  CAS  Google Scholar 

  • Zipfel, P. F. & Skerka, C. Complement regulators and inhibitory proteins. Nat. Rev. Immunol. 9, 729–740 (2009).

    Article  CAS  Google Scholar 

  • Morgan, B. P. & Harris, C. L. Complement, a target for therapy in inflammatory and degenerative diseases. Nat. Rev. Drug Discov. 14, 857–877 (2015).

    Article  CAS  Google Scholar 

  • Mastellos, D. C., Ricklin, D. & Lambris, J. D. Clinical promise of next-generation complement therapeutics. Nat. Rev. Drug Discov. 18, 707–729 (2019).

    Article  CAS  Google Scholar 

  • Smith, G. P. & Smith, R. A. Membrane-targeted complement inhibitors. Mol. Immunol. 38, 249–255 (2001).

    Article  CAS  Google Scholar 

  • Gaikwad, H. et al. Complement inhibitors block complement C3 opsonization and improve targeting selectivity of nanoparticles in blood. Bioconjugate Chem. 31, 1844–1856 (2020).

    Article  CAS  Google Scholar 

  • Gifford, G. et al. Complement therapeutics meets nanomedicine: overcoming human complement activation and leukocyte uptake of nanomedicines with soluble domains of CD55. J. Control. Release 302, 181–189 (2019).

    Article  CAS  Google Scholar 

  • Belling, J. N. et al. Stealth immune properties of graphene oxide enabled by surface-bound complement factor H. ACS Nano 10, 10161–10172 (2016).

    Article  CAS  Google Scholar 

  • Wang, Z. et al. Combating complement’s deleterious effects on nanomedicine by conjugating complement regulatory proteins to nanoparticles. Adv. Mater. 34, e2107070 (2022).

    Article  Google Scholar 

  • Souza, D. G., Esser, D., Bradford, R., Vieira, A. T. & Teixeira, M. M. APT070 (Mirococept), a membrane-localised complement inhibitor, inhibits inflammatory responses that follow intestinal ischaemia and reperfusion injury. Br. J. Pharmacol. 145, 1027–1034 (2005).

    Article  CAS  Google Scholar 

  • White, J. et al. Biological activity, membrane-targeting modification, and crystallization of soluble human decay accelerating factor expressed in E. coli. Protein Sci. 13, 2406–2415 (2004).

    Article  CAS  Google Scholar 

  • Bechtler, C. et al. Complement-regulatory biomaterial coatings: activity and selectivity profile of the factor H-binding peptide 5C6. Acta Biomater. 155, 123–138 (2023).

    Article  CAS  Google Scholar 

  • Hare, J. I. et al. Challenges and strategies in anti-cancer nanomedicine development: an industry perspective. Adv. Drug Deliv. Rev. 108, 25–38 (2017).

    Article  CAS  Google Scholar 

  • Benamu, E. & Montoya, J. G. Infections associated with the use of eculizumab: recommendations for prevention and prophylaxis. Curr. Opin. Infect. Dis. 29, 319–329 (2016).

    Article  CAS  Google Scholar 

  • Barnum, S. R. Therapeutic inhibition of complement: well worth the risk. Trend Pharmacol. Sci. 38, 503–505 (2017).

    Article  CAS  Google Scholar 

  • van den Elsen, J. M. & Isenman, D. E. A crystal structure of the complex between human complement receptor 2 and its ligand C3d. Science 332, 608–611 (2011).

    Article  Google Scholar 

  • Farries, T. C., Seya, T., Harrison, R. A. & Atkinson, J. P. Competition for binding sites on C3b by CR1, CR2, MCP, factor B and factor H. Complement Inflamm. 7, 30–41 (1990).

    Article  CAS  Google Scholar 

  • Holers, M. et al. The human complement receptor type 2 (CR2)/CR1 fusion protein TT32, a targeted inhibitor of the classical and alternative pathway C3 convertases, prevents arthritis in active immunization and passive transfer models and acts by CR2-dependent targeting of CR1 regulatory activity. Immunobiology 217, 1210–1210 (2012).

    Article  Google Scholar 

  • Holers, V. M., Rohrer, B. & Tomlinson, S. CR2-mediated targeting of complement inhibitors: bench-to-bedside using a novel strategy for site-specific complement modulation. Adv. Exp. Med. Biol. 735, 137–154 (2013).

    Article  CAS  Google Scholar 

  • Huang, Y. X., Qiao, F., Atkinson, C., Holers, V. M. & Tomlinson, S. A novel targeted inhibitor of the alternative pathway of complement and its therapeutic application in ischemia/reperfusion injury. J. Immunol. 181, 8068–8076 (2008).

    Article  CAS  Google Scholar 

  • Risitano, A. M. et al. The complement receptor 2/factor H fusion protein TT30 protects paroxysmal nocturnal hemoglobinuria erythrocytes from complement-mediated hemolysis and C3 fragment. Blood 119, 6307–6316 (2012).

    Article  CAS  Google Scholar 

  • Tomlinson, S. & Thurman, J. M. Tissue-targeted complement therapeutics. Mol. Immunol. 102, 120–128 (2018).

    Article  CAS  Google Scholar 

  • Risitano, A. M. et al. Safety and pharmacokinetics of the complement inhibitor TT30 in a phase I trial for untreated PNH patients. Blood 126, 2137 (2015).

    Article  Google Scholar 

  • Fridkis-Hareli, M. et al. The human complement receptor type 2 (CR2)/CR1 fusion protein TT32, a novel targeted inhibitor of the classical and alternative pathway C3 convertases, prevents arthritis in active immunization and passive transfer mouse models. Mol. Immunol. 105, 150–164 (2019).

    Article  CAS  Google Scholar 

  • Song, H., Qiao, F., Atkinson, C., Holers, V. M. & Tomlinson, S. A complement C3 inhibitor specifically targeted to sites of complement activation effectively ameliorates collagen-induced arthritis in DBA/1J mice. J. Immunol. 179, 7860–7867 (2007).

    Article  CAS  Google Scholar 

  • Kim, Y. U. et al. Mouse complement regulatory protein Crry/p65 uses the specific mechanisms of both human decay-accelerating factor and membrane cofactor protein. J. Exp. Med. 181, 151–159 (1995).

    Article  CAS  Google Scholar 

  • Benasutti, H. et al. Variability of complement response toward preclinical and clinical nanocarriers in the general population. Bioconjugate Chem. 28, 2747–2755 (2017).

    Article  CAS  Google Scholar 

  • Berger, N. et al. New analogs of the complement C3 inhibitor compstatin with increased solubility and improved pharmacokinetic profile. J. Med. Chem. 61, 6153–6162 (2018).

    Article  CAS  Google Scholar 

  • Lamers, C. et al. Insight into mode-of-action and structural determinants of the compstatin family of clinical complement inhibitors. Nat. Commun. 13, 5519 (2022).

    Article  CAS  Google Scholar 

  • Guthridge, J. M. et al. Epitope mapping using the X-ray crystallographic structure of complement receptor type 2 (CR2)/CD21: identification of a highly inhibitory monoclonal antibody that directly recognizes the CR2-C3d interface. J. Immunol. 167, 5758–5766 (2001).

    Article  CAS  Google Scholar 

  • Chen, F. et al. Complement proteins bind to nanoparticle protein corona and undergo dynamic exchange in vivo. Nat. Nanotechnol. 12, 387–393 (2017).

    Article  CAS  Google Scholar 

  • Venkatesh, Y. P., Minich, T. M., Law, S. K. & Levine, R. P. Natural release of covalently bound C3b from cell surfaces and the study of this phenomenon in the fluid-phase system. J. Immunol. 132, 1435–1439 (1984).

    Article  CAS  Google Scholar 

  • Li, Y. et al. Complement opsonization of nanoparticles: differences between humans and preclinical species. J. Control. Release 338, 548–556 (2021).

    Article  CAS  Google Scholar 

  • Hardy, M. P., Rowe, T. & Wymann, S. Soluble complement receptor 1 therapeutics. J. Immunol. Sci. 6, 1–17 (2022).

    Article  Google Scholar 

  • Voorhees, A. B., Baker, H. J. & Pulaski, E. J. Reactions of albino rats to injections of dextran. Proc. Soc. Exp. Biol. Med. 76, 254–256 (1951).

    Article  CAS  Google Scholar 

  • Dezsi, L. et al. Complement activation-related pathophysiological changes in anesthetized rats: activator-dependent variations of symptoms and mediators of pseudoallergy. Molecules 24, 3283 (2019).

    Article  CAS  Google Scholar 

  • Timotius, I. K. et al. Combination of defined catwalk gait parameters for predictive locomotion recovery in experimental spinal cord injury rat models. eNeuro 8, 0497-20.2021 (2021).

  • Chen, E. et al. Premature drug release from polyethylene glycol (PEG)-coated liposomal doxorubicin via formation of the membrane attack complex. ACS Nano 14, 7808–7822 (2020).

    Article  CAS  Google Scholar 

  • Munter, R. et al. Unravelling heterogeneities in complement and antibody opsonization of individual liposomes as a function of surface architecture. Small 18, e2106529 (2022).

    Article  Google Scholar 

  • Vu, V. P. et al. Immunoglobulin deposition on biomolecule corona determines complement opsonization efficiency of preclinical and clinical nanoparticles. Nat. Nanotechnol. 14, 260–268 (2019).

    Article  CAS  Google Scholar 

  • Wang, G. et al. In vitro and in vivo differences in murine third complement component (C3) opsonization and macrophage/leukocyte responses to antibody-functionalized iron oxide nanoworms. Front. Immunol. 8, 151 (2017).

    Google Scholar 

  • Wang, G. et al. Activation of human complement system by dextran-coated iron oxide nanoparticles is not affected by dextran/Fe ratio, hydroxyl modifications, and crosslinking. Front. Immunol. 7, 418 (2016).

    Article  Google Scholar 

  • Moghimi, S. M. & Simberg, D. Critical issues and pitfalls in serum and plasma handling for complement analysis in nanomedicine and bionanotechnology. Nano Today 44, 101479 (2022).

    Article  CAS  Google Scholar 

  • Wu, L.-P. et al. Dendrimer end-terminal motif-dependent evasion of human complement and complement activation through IgM hitchhiking. Nat. Commun. 12, 4858 (2021).

    Article  CAS  Google Scholar 

  • Wang, G. et al. High-relaxivity superparamagnetic iron oxide nanoworms with decreased immune recognition and long-circulating properties. ACS Nano 8, 12437–12449 (2014).

    Article  CAS  Google Scholar 

  • Time Stamp:

    More from Nature Nanotechnology