Giant orbital magnetic moments and paramagnetic shift in artificial relativistic atoms and molecules

Giant orbital magnetic moments and paramagnetic shift in artificial relativistic atoms and molecules

Source Node: 1997460
  • Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    Article  CAS  Google Scholar 

  • Katsnelson, M., Novoselov, K. & Geim, A. Chiral tunnelling and the Klein paradox in graphene. Nat. Phys. 2, 620–625 (2006).

    Article  CAS  Google Scholar 

  • Young, A. F. & Kim, P. Quantum interference and Klein tunnelling in graphene heterojunctions. Nat. Phys. 5, 222–226 (2009).

    Article  CAS  Google Scholar 

  • Wang, Y. et al. Observing atomic collapse resonances in artificial nuclei on graphene. Science 340, 734–737 (2013).

    Article  CAS  Google Scholar 

  • Lu, J. et al. Frustrated supercritical collapse in tunable charge arrays on graphene. Nat. Commun. 10, 477 (2019).

    Article  CAS  Google Scholar 

  • Chen, S. et al. Electron optics with p-n junctions in ballistic graphene. Science 353, 1522–1525 (2016).

    Article  CAS  Google Scholar 

  • Cheianov, V. V., Fal’ko, V. & Altshuler, B. The focusing of electron flow and a Veselago lens in graphene p-n junctions. Science 315, 1252–1255 (2007).

    Article  CAS  Google Scholar 

  • Cheianov, V. V. & Fal’ko, V. I. Selective transmission of Dirac electrons and ballistic magnetoresistance of n−p junctions in graphene. Phys. Rev. B 74, 041403 (2006).

    Article  Google Scholar 

  • Liu, M.-H., Gorini, C. & Richter, K. Creating and steering highly directional electron beams in graphene. Phys. Rev. Lett. 118, 066801 (2017).

    Article  Google Scholar 

  • Chakraborty, T. Quantum Dots: A Survey of the Properties of Artificial Atoms (Elsevier, 1999).

  • Reimann, S. M. & Manninen, M. Electronic structure of quantum dots. Rev. Mod. Phys. 74, 1283 (2002).

    Article  CAS  Google Scholar 

  • Kouwenhoven, L. P., Austing, D. & Tarucha, S. Few-electron quantum dots. Rep. Prog. Phys. 64, 701 (2001).

    Article  CAS  Google Scholar 

  • Hanson, R., Kouwenhoven, L. P., Petta, J. R., Tarucha, S. & Vandersypen, L. M. Spins in few-electron quantum dots. Rev. Mod. Phys. 79, 1217 (2007).

    Article  CAS  Google Scholar 

  • Lodahl, P., Mahmoodian, S. & Stobbe, S. Interfacing single photons and single quantum dots with photonic nanostructures. Rev. Mod. Phys. 87, 347 (2015).

    Article  CAS  Google Scholar 

  • Zhao, Y. et al. Creating and probing electron whispering-gallery modes in graphene. Science 348, 672–675 (2015).

    Article  CAS  Google Scholar 

  • Freitag, N. M. et al. Electrostatically confined monolayer graphene quantum dots with orbital and valley splittings. Nano Lett. 16, 5798–5805 (2016).

    Article  CAS  Google Scholar 

  • Gutiérrez, C., Brown, L., Kim, C.-J., Park, J. & Pasupathy, A. N. Klein tunnelling and electron trapping in nanometre-scale graphene quantum dots. Nat. Phys. 12, 1069–1075 (2016).

    Article  Google Scholar 

  • Lee, J. et al. Imaging electrostatically confined Dirac fermions in graphene quantum dots. Nat. Phys. 12, 1032–1036 (2016).

    Article  CAS  Google Scholar 

  • Ghahari, F. et al. An on/off Berry phase switch in circular graphene resonators. Science 356, 845–849 (2017).

    Article  CAS  Google Scholar 

  • Jiang, Y. et al. Tuning a circular p–n junction in graphene from quantum confinement to optical guiding. Nat. Nanotechnol. 12, 1045–1049 (2017).

    Article  CAS  Google Scholar 

  • Bai, K.-K. et al. Generating atomically sharp p−n junctions in graphene and testing quantum electron optics on the nanoscale. Phys. Rev. B 97, 045413 (2018).

    Article  CAS  Google Scholar 

  • Freitag, N. M. et al. Large tunable valley splitting in edge-free graphene quantum dots on boron nitride. Nat. Nanotechnol. 13, 392–397 (2018).

    Article  CAS  Google Scholar 

  • Quezada-López, E. A. et al. Comprehensive electrostatic modeling of exposed quantum dots in graphene/hexagonal boron nitride heterostructures. Nanomaterials 10, 1154 (2020).

    Article  Google Scholar 

  • Behn, W. A. et al. Measuring and tuning the potential landscape of electrostatically defined quantum dots in graphene. Nano Lett. 21, 5013–5020 (2021).

    Article  CAS  Google Scholar 

  • Zhang, J., Jiang, Y.-P., Ma, X.-C. & Xue, Q.-K. Berry-phase switch in electrostatically confined topological surface states. Phys. Rev. Lett. 128, 126402 (2022).

    Article  CAS  Google Scholar 

  • Rodriguez-Nieva, J. F. & Levitov, L. S. Berry phase jumps and giant nonreciprocity in Dirac quantum dots. Phys. Rev. B 94, 235406 (2016).

    Article  Google Scholar 

  • Ge, Z. et al. Visualization and manipulation of bilayer graphene quantum dots with broken rotational symmetry and nontrivial topology. Nano Lett. 20, 8682–8688 (2020).

    Article  CAS  Google Scholar 

  • Bethe, H. A. & Salpeter, E. E. Quantum Mechanics of One- and Two-Electron Atoms (Springer Science & Business Media, 2012).

  • Rinaldi, R. et al. Zeeman effect in parabolic quantum dots. Phys. Rev. Lett. 77, 342 (1996).

    Article  CAS  Google Scholar 

  • Paskov, P. et al. Magnetoluminescence of highly excited InAs/GaAs self-assembled quantum dots. Phys. Rev. B 62, 7344 (2000).

    Article  CAS  Google Scholar 

  • Raymond, S. et al. Excitonic energy shell structure of self-assembled InGaAs/GaAs quantum dots. Phys. Rev. Lett. 92, 187402 (2004).

    Article  CAS  Google Scholar 

  • Ren, Y.-N., Cheng, Q., Sun, Q.-F. & He, L. Realizing valley-polarized energy spectra in bilayer graphene quantum dots via continuously tunable Berry phases. Phys. Rev. Lett. 128, 206805 (2022).

    Article  CAS  Google Scholar 

  • Tong, C. et al. Tunable valley splitting and bipolar operation in graphene quantum dots. Nano Lett. 21, 1068–1073 (2021).

    Article  CAS  Google Scholar 

  • Ge, Z. et al. Control of giant topological magnetic moment and valley splitting in trilayer graphene. Phys. Rev. Lett. 127, 136402 (2021).

    Article  CAS  Google Scholar 

  • Lenz, J. & Edelstein, S. Magnetic sensors and their applications. IEEE Sens. J. 6, 631–649 (2006).

    Article  Google Scholar 

  • Degen, C. L., Reinhard, F. & Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 89, 035002 (2017).

    Article  Google Scholar 

  • Fu, Z.-Q. et al. Relativistic artificial molecules realized by two coupled graphene quantum dots. Nano Lett. 20, 6738–6743 (2020).

    Article  CAS  Google Scholar 

  • Ashcroft, N. W. & Mermin, N. D. Solid State Physics (Cengage Learning, 1976).

  • Arimondo, E., Ciampini, D. & Rizzo, C. Chapter one—spectroscopy of natural and artificial atoms in magnetic fields. In Advances In Atomic, Molecular, and Optical Physics 65, 1–66 (Elsevier, 2016).

  • Ambegaokar, V. & Eckern, U. Coherence and persistent currents in mesoscopic rings. Phys. Rev. Lett. 65, 381 (1990).

    Article  CAS  Google Scholar 

  • Bleszynski-Jayich, A. et al. Persistent currents in normal metal rings. Science 326, 272–275 (2009).

    Article  CAS  Google Scholar 

  • Mooij, J. et al. Josephson persistent-current qubit. Science 285, 1036–1039 (1999).

    Article  CAS  Google Scholar 

  • Nisoli, C., Moessner, R. & Schiffer, P. Colloquium: artificial spin ice: designing and imaging magnetic frustration. Rev. Mod. Phys. 85, 1473 (2013).

    Article  CAS  Google Scholar 

  • Zomer, P., Dash, S., Tombros, N. & Van Wees, B. A transfer technique for high mobility graphene devices on commercially available hexagonal boron nitride. Appl. Phys. Lett. 99, 232104 (2011).

    Article  Google Scholar 

  • Goossens, A. et al. Mechanical cleaning of graphene. Appl. Phys. Lett. 100, 073110 (2012).

    Article  Google Scholar 

  • Time Stamp:

    More from Nature Nanotechnology