Transport by circulating myeloid cells drives liposomal accumulation in inflamed synovium - Nature Nanotechnology

Transport by circulating myeloid cells drives liposomal accumulation in inflamed synovium – Nature Nanotechnology

Source Node: 2763977
  • Sercombe, L. et al. Advances and challenges of liposome assisted drug delivery. Front. Pharmacol. 6, 286 (2015).

    Article  Google Scholar 

  • Giulimondi, F. et al. Interplay of protein corona and immune cells controls blood residency of liposomes. Nat. Commun. 10, 3686 (2019).

    Article  CAS  Google Scholar 

  • Suk, J. S., Xu, Q., Kim, N., Hanes, J. & Ensign, L. M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev. 99, 28–51 (2016).

    Article  CAS  Google Scholar 

  • Lundqvist, M. et al. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc. Natl Acad. Sci. USA 105, 14265–14270 (2008).

  • Ren, H. et al. Role of liposome size, surface charge, and PEGylation on rheumatoid arthritis targeting therapy. ACS Appl. Mater. Interfaces 11, 20304–20315 (2019).

    Article  CAS  Google Scholar 

  • Yang, M., Feng, X., Ding, J., Chang, F. & Chen, X. Nanotherapeutics relieve rheumatoid arthritis. J. Control. Release 252, 108–124 (2017).

    Article  CAS  Google Scholar 

  • Gawne, P. J. et al. PET imaging of liposomal glucocorticoids using 89 Zr-oxine: theranostic applications in inflammatory arthritis. Theranostics 10, 3867–3879 (2020).

    Article  CAS  Google Scholar 

  • Metselaar, J. M. et al. Liposomal targeting of glucocorticoids to synovial lining cells strongly increases therapeutic benefit in collagen type II arthritis. Ann. Rheum. Dis. 63, 348–353 (2004).

    Article  CAS  Google Scholar 

  • Matsumura, Y. & Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent Smancs. Cancer Res. 46, 6387–6392 (1986).

    CAS  Google Scholar 

  • Danhier, F. To exploit the tumor microenvironment: since the EPR effect fails in the clinic, what is the future of nanomedicine? J. Control. Release 244, 108–121 (2016).

    Article  CAS  Google Scholar 

  • Davignon, J. L. et al. Targeting monocytes/macrophages in the treatment of rheumatoid arthritis. Rheumatology 52, 590–598 (2013).

    Article  CAS  Google Scholar 

  • Kaplan, M. J. Role of neutrophils in systemic autoimmune diseases. Arthritis Res. Ther. 15, 219 (2013).

    Article  Google Scholar 

  • Izar, M. C. O. et al. Monocyte subtypes and the CCR2 chemokine. Clin. Sci. (Lond.) 131, 1215–1224 (2017).

  • McInnes, I. B. & Schett, G. Pathogenetic insights from the treatment of rheumatoid arthritis. Lancet 389, 2328–2337 (2017).

    Article  CAS  Google Scholar 

  • Dammes, N. et al. Conformation-sensitive targeting of lipid nanoparticles for RNA therapeutics. Nat. Nanotechnol. 16, 1030–1038 (2021).

    Article  CAS  Google Scholar 

  • Sofias, A. M., Andreassen, T. & Hak, S. Nanoparticle ligand-decoration procedures affect in vivo interactions with immune cells. Mol. Pharm. 15, 5754–5761 (2018).

    Article  CAS  Google Scholar 

  • Chu, D., Gao, J. & Wang, Z. Neutrophil-mediated delivery of therapeutic nanoparticles across blood vessel barrier for treatment of inflammation and infection. ACS Nano 9, 11800–11811 (2015).

    Article  CAS  Google Scholar 

  • Karathanasis, E. et al. Selective targeting of nanocarriers to neutrophils and monocytes. Ann. Biomed. Eng. 37, 1984–1992 (2009).

    Article  Google Scholar 

  • Veiga, N. et al. Leukocyte-specific siRNA delivery revealing IRF8 as a potential anti-inflammatory target. J. Control. Release 313, 33–41 (2019).

    Article  CAS  Google Scholar 

  • Vargason, A. M., Anselmo, A. C. & Mitragotri, S. The evolution of commercial drug delivery technologies. Nat. Biomed. Eng. 5, 951–967 (2021).

  • El Kebir, D. E. & Filep, J. G. Modulation of neutrophil apoptosis and the resolution of inflammation through β2 integrins. Front. Immunol. 4, 60 (2013).

    Article  Google Scholar 

  • Braeckmans, K. et al. Sizing nanomatter in biological fluids by fluorescence single particle tracking. Nano Lett. 10, 4435–4442 (2010).

  • Chen, D., Ganesh, S., Wang, W. & Amiji, M. Plasma protein adsorption and biological identity of systemically administered nanoparticles. Nanomedicine 12, 2113–2135 (2017).

    Article  CAS  Google Scholar 

  • De Chermont, Q. L. M. et al. Nanoprobes with near-infrared persistent luminescence for in vivo imaging. Proc. Natl Acad. Sci. USA 104, 9266–9271 (2007).

    Article  Google Scholar 

  • Smith, W. J. et al. Lipophilic indocarbocyanine conjugates for efficient incorporation of enzymes, antibodies and small molecules into biological membranes. Biomaterials 161, 57 (2018).

    Article  CAS  Google Scholar 

  • Hofkens, W., Storm, G., Van Den Berg, W. B. & Van Lent, P. L. Liposomal targeting of glucocorticoids to the inflamed synovium inhibits cartilage matrix destruction during murine antigen-induced arthritis. Int. J. Pharm. 416, 486–492 (2011).

    Article  CAS  Google Scholar 

  • Kratofil, R. M., Kubes, P. & Deniset, J. F. Monocyte conversion during inflammation and injury. Arterioscler. Thromb. Vasc. Biol. 37, 35–42 (2017).

    Article  CAS  Google Scholar 

  • Gschwandtner, M., Derler, R. & Midwood, K. S. More than just attractive: how CCL2 influences myeloid cell behavior beyond chemotaxis. Front. Immunol. 10, 2759 (2019).

    Article  CAS  Google Scholar 

  • Seeuws, S. et al. A multiparameter approach to monitor disease activity in collagen-induced arthritis. Arthritis Res. Ther. 12, R160 (2010).

    Article  Google Scholar 

  • Tu, J. et al. Ontogeny of synovial macrophages and the roles of synovial macrophages from different origins in arthritis. Front. Immunol. 10, 1146 (2019).

    Article  CAS  Google Scholar 

  • Hoeffel, G. et al. Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac–derived macrophages. J. Exp. Med. 209, 1167–1181 (2012).

    Article  CAS  Google Scholar 

  • Inglis, J. J. et al. Collagen-induced arthritis in C57BL/6 mice is associated with a robust and sustained T-cell response to type II collagen. Arthritis Res. Ther. 9, R113 (2007).

    Article  Google Scholar 

  • Asquith, D. L., Miller, A. M., McInnes, I. B. & Liew, F. Y. Animal models of rheumatoid arthritis. Eur. J. Immunol. 39, 2040–2044 (2009).

    Article  CAS  Google Scholar 

  • Wipke, B. T. & Allen, P. M. Essential role of neutrophils in the initiation and progression of a murine model of rheumatoid arthritis. J. Immunol. 167, 1601–1608 (2001).

    Article  CAS  Google Scholar 

  • Akinc, A. et al. The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs. Nat. Nanotechnol. 14, 1084–1087 (2019).

  • Kulkarni, J. A., Witzigmann, D., Chen, S., Cullis, P. R. & Van Der Meel, R. Lipid nanoparticle technology for clinical translation of siRNA therapeutics. Acc. Chem. Res. 52, 2435–2444 (2019).

    Article  CAS  Google Scholar 

  • Zhu, X. et al. Surface de-PEGylation controls nanoparticle-mediated siRNA delivery in vitro and in vivo. Theranostics 7, 1990–2002 (2017).

    Article  CAS  Google Scholar 

  • Cambré, I. et al. Mechanical strain determines the site-specific localization of inflammation and tissue damage in arthritis. Nat. Commun. 9, 4613 (2018).

    Article  Google Scholar 

  • Meghraoui-Kheddar, A., Barthelemy, S., Boissonnas, A. & Combadière, C. Revising CX3CR1 expression on murine classical and non-classical monocytes. Front. Immunol. 11, 1117 (2020).

    Article  CAS  Google Scholar 

  • Kinne, R. W. Macrophages in rheumatoid arthritis. Arthritis Res. Ther. 2, 189 (2000).

  • Veiga, N. et al. Cell specific delivery of modified mRNA expressing therapeutic proteins to leukocytes. Nat. Commun. 9, 4493 (2018).

    Article  Google Scholar 

  • Wyatt Shields, C. et al. Cellular backpacks for macrophage immunotherapy. Sci. Adv. 6, eaaz6579 (2020).

    Article  Google Scholar 

  • Kumar, R. A., Li, Y., Dang, Q. & Yang, F. Monocytes in rheumatoid arthritis: circulating precursors of macrophages and osteoclasts and, their heterogeneity and plasticity role in RA pathogenesis. Int. Immunopharmacol. 65, 348–359 (2018).

    Article  Google Scholar 

  • Kim, J. & Sahay, G. Nanomedicine hitchhikes on neutrophils to the inflamed lung. Nat. Nanotechnol. 17, 1–2 (2021).

    Article  Google Scholar 

  • Palchetti, S. et al. The protein corona of circulating PEGylated liposomes. Biochim. Biophys. Acta Biomembr. 1858, 189–196 (2016).

    Article  CAS  Google Scholar 

  • Schöttler, S. et al. Protein adsorption is required for stealth effect of poly(ethylene glycol)- and poly(phosphoester)-coated nanocarriers. Nat. Nanotechnol. 11, 372–377 (2016).

    Article  Google Scholar 

  • Francia, V., Schiffelers, R. M., Cullis, P. R. & Witzigmann, D. The biomolecular corona of lipid nanoparticles for gene therapy. Bioconjugate Chem. 31, 2046–2059 (2020).

    Article  CAS  Google Scholar 

  • Dale, D. C., Boxer, L., & Liles, W. C. The phagocytes: neutrophils and monocytes. Blood 112, 935–945 (2008).

    Article  CAS  Google Scholar 

  • Leuschner, F. et al. Therapeutic siRNA silencing in inflammatory monocytes in mice. Nat. Biotechnol. 29, 1005–1010 (2011).

    Article  CAS  Google Scholar 

  • Novobrantseva, T. I. et al. Systemic RNAi-mediated gene silencing in nonhuman primate and rodent myeloid cells. Mol. Ther. Nucleic Acids 1, e4 (2012).

    Article  Google Scholar 

  • Li, C. et al. Mechanisms of innate and adaptive immunity to the Pfizer-BioNTech BNT162b2 vaccine. Nat. Immunol. 23, 543–555 (2022).

    Article  CAS  Google Scholar 

  • Lenart, K. et al. A third dose of the unmodified COVID-19 mRNA vaccine CVnCoV enhances quality and quantity of immune responses. Mol. Ther. Methods Clin. Dev. 27, 309–323 (2022).

    Article  CAS  Google Scholar 

  • Jafarzadeh, A., Chauhan, P., Saha, B., Jafarzadeh, S. & Nemati, M. Contribution of monocytes and macrophages to the local tissue inflammation and cytokine storm in COVID-19: lessons from SARS and MERS, and potential therapeutic interventions. Life Sci. 257, 118102 (2020).

    Article  CAS  Google Scholar 

  • Martinez, F. O., Combes, T. W., Orsenigo, F. & Gordon, S. Monocyte activation in systemic Covid-19 infection: assay and rationale. eBioMedicine 59, 102964 (2020).

    Article  CAS  Google Scholar 

  • Zhang, D. et al. COVID‐19 infection induces readily detectable morphologic and inflammation‐related phenotypic changes in peripheral blood monocytes. J. Leukoc. Biol. 109, 13–22 (2020).

  • Pence, B. D. Severe COVID-19 and aging: are monocytes the key? GeroScience 42, 1051–1061 (2020).

    Article  CAS  Google Scholar 

  • Ragab, D., Salah Eldin, H., Taeimah, M., Khattab, R. & Salem, R. The COVID-19 cytokine storm; what we know so far. Front. Immunol. 11, 1446 (2020).

    Article  CAS  Google Scholar 

  • Yoshimura, T. The production of monocyte chemoattractant protein-1 (MCP-1)/CCL2 in tumor microenvironments. Cytokine 98, 71–78 (2017).

    Article  CAS  Google Scholar 

  • Parihar, A., Eubank, T. D. & Doseff, A. I. Monocytes and macrophages regulate immunity through dynamic networks of survival and cell death. J. Innate Immun. 2, 204–215 (2010).

    Article  Google Scholar 

  • Yang, J., Zhang, L., Yu, C., Yang, X. F. & Wang, H. Monocyte and macrophage differentiation: circulation inflammatory monocyte as biomarker for inflammatory diseases. Biomark. Res. 2, 1 (2014).

    Article  Google Scholar 

  • Lammers, T. et al. Dexamethasone nanomedicines for COVID-19. Nat. Nanotechnol. 15, 622–624 (2020).

    Article  CAS  Google Scholar 

  • Benchimol, M. J., Bourne, D., Moghimi, S. M. & Simberg, D. Pharmacokinetic analysis reveals limitations and opportunities for nanomedicine targeting of endothelial and extravascular compartments of tumors. J. Drug Target. 27, 690–698 (2019).

    Article  Google Scholar 

  • Fang, J., Nakamura, H. & Maeda, H. The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Deliv. Rev. 63, 136–151 (2011).

    Article  CAS  Google Scholar 

  • Brocato, T. A. et al. Understanding the connection between nanoparticle uptake and cancer treatment efficacy using mathematical modeling. Sci. Rep. 8, 7538 (2018).

    Article  Google Scholar 

  • Avnir, Y. et al. Amphipathic weak acid glucocorticoid prodrugs remote-loaded into sterically stabilized nanoliposomes evaluated in arthritic rats and in a Beagle dog: a novel approach to treating autoimmune arthritis. Arthritis Rheum. 58, 119–129 (2008).

    Article  CAS  Google Scholar 

  • Avnir, Y. et al. Fabrication principles and their contribution to the superior in vivo therapeutic efficacy of nano-liposomes remote loaded with glucocorticoids. PLoS ONE 6, e25721 (2011).

    Article  CAS  Google Scholar 

  • Verbeke, R. et al. Broadening the message: a nanovaccine co-loaded with messenger RNA and α-GalCer induces antitumor immunity through conventional and natural killer T cells. ACS Nano 13, 1655–1669 (2019).

    CAS  Google Scholar 

  • Kulkarni, J. A. et al. Fusion-dependent formation of lipid nanoparticles containing macromolecular payloads. Nanoscale 11, 9023–9031 (2019).

    Article  CAS  Google Scholar 

  • Kulkarni, J. A. et al. On the formation and morphology of lipid nanoparticles containing ionizable cationic lipids and siRNA. ACS Nano 12, 4787–4795 (2018).

    Article  CAS  Google Scholar 

  • Hirota, S., De Ilarduya, C. T., Barron, L. G. & Szoka, F. C. Simple mixing device to reproducibly prepare cationic lipid-DNA complexes (lipoplexes). Biotechniques 27, 286–290 (1999).

    Article  CAS  Google Scholar 

  • Kulkarni, J. A. et al. Rapid synthesis of lipid nanoparticles containing hydrophobic inorganic nanoparticles. Nanoscale 9, 13600–13609 (2017).

    Article  CAS  Google Scholar 

  • Kannan, K., Ortmann, R. A. & Kimpel, D. Animal models of rheumatoid arthritis and their relevance to human disease. Pathophysiology 12, 167–181 (2005).

    Article  Google Scholar 

  • Seemann, S., Zohles, F. & Lupp, A. Comprehensive comparison of three different animal models for systemic inflammation. J. Biomed. Sci. 24, 60 (2017).

    Article  Google Scholar 

  • Time Stamp:

    More from Nature Nanotechnology