Valley-centre tandem perovskite light-emitting diodes - Nature Nanotechnology

Valley-centre tandem perovskite light-emitting diodes – Nature Nanotechnology

Source Node: 3064195
  • Cho, H. et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 350, 1222–1225 (2015).

    Article  CAS  Google Scholar 

  • Kim, Y.-H. et al. Multicolored organic/inorganic hybrid perovskite light-emitting diodes. Adv. Mater. 27, 1248–1254 (2015).

    Article  CAS  Google Scholar 

  • Protesescu, L. et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15, 3692–3696 (2015).

    Article  CAS  Google Scholar 

  • Kim, Y.-H., Cho, H. & Lee, T.-W. Metal halide perovskite light emitters. Proc. Natl Acad. Sci. USA 113, 11694–11702 (2016).

    Article  CAS  Google Scholar 

  • Quan, L. N. et al. Perovskites for next-generation optical sources. Chem. Rev. 119, 7444–7477 (2019).

    Article  CAS  Google Scholar 

  • Kim, Y.-H. et al. Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes. Nat. Photon. 15, 148–155 (2021).

    Article  CAS  Google Scholar 

  • Ma, D. et al. Distribution control enables efficient reduced-dimensional perovskite LEDs. Nature 599, 594–598 (2021).

    Article  CAS  Google Scholar 

  • Kim, J. S. et al. Ultra-bright, efficient and stable perovskite light-emitting diodes. Nature 611, 688–694 (2022).

    Article  CAS  Google Scholar 

  • Woo, S.-J., Kim, J. S. & Lee, T.-W. Characterization of stability and challenges to improve lifetime in perovskite LEDs. Nat. Photon. 15, 630–634 (2021).

    Article  CAS  Google Scholar 

  • Fan, X. C. et al. Ultrapure green organic light-emitting diodes based on highly distorted fused π-conjugated molecular design. Nat. Photon. 17, 280–285 (2023).

    Article  CAS  Google Scholar 

  • Chen, Y. et al. Approaching nearly 40% external quantum efficiency in organic light emitting diodes utilizing a green thermally activated delayed fluorescence emitter with an extended linear donor–acceptor–donor structure. Adv. Mater. 33, 2103293 (2021).

    Article  CAS  Google Scholar 

  • Han, T.-H. et al. Approaching ultimate flexible organic light-emitting diodes using a graphene anode. NPG Asia Mater. 8, e303 (2016).

    Article  CAS  Google Scholar 

  • Chang, Y. W. et al. A versatile ferrocene-containing material as a p-type charge generation layer for high-performance full color tandem OLEDs. Chem. Commun. 52, 14294–14297 (2016).

    Article  CAS  Google Scholar 

  • Cho, T. Y., Lin, C. L. & Wu, C. C. Microcavity two-unit tandem organic light-emitting devices having a high efficiency. Appl. Phys. Lett. 88, 111106 (2006).

    Article  Google Scholar 

  • Wang, L. et al. Design of high-performance tandem blue devices for quantum-dot OLED display. SID Symp. Dig. Tech. Pap. 51, 929–932 (2020).

    Article  CAS  Google Scholar 

  • Mizusaki, M. et al. Single and tandem OLED display technologies with high efficiency and long lifetime. SID Symp. Dig. Tech. Pap. 52, 278–281 (2021).

    Article  Google Scholar 

  • Chan, C. Y. et al. Stable pure-blue hyperfluorescence organic light-emitting diodes with high-efficiency and narrow emission. Nat. Photon. 15, 203–207 (2021).

    Article  CAS  Google Scholar 

  • Forrest, S. R., Bradley, D. D. C. & Thompson, M. E. Measuring the efficiency of organic light-emitting devices. Adv. Mater. 15, 1043–1048 (2003).

    Article  CAS  Google Scholar 

  • Sun, Y. et al. Improved performance of red phosphorescent organic light emitting diodes using partial mixed host system. J. Nanosci. Nanotechnol. 15, 8081–8085 (2015).

    Article  CAS  Google Scholar 

  • Kim, J. M., Lee, C. H. & Kim, J.-J. Mobility balance in the light-emitting layer governs the polaron accumulation and operational stability of organic light-emitting diodes. Appl. Phys. Lett. 111, 203301 (2017).

    Article  Google Scholar 

  • Kröger, M. et al. Temperature-independent field-induced charge separation at doped organic/organic interfaces: experimental modeling of electrical properties. Phys. Rev. B 75, 235321 (2007).

    Article  Google Scholar 

  • Lee, T.-W., Chung, Y., Kwon, O. & Park, J. J. Self-organized gradient hole injection to improve the performance of polymer electroluminescent devices. Adv. Funct. Mater. 17, 390–396 (2007).

    Article  CAS  Google Scholar 

  • Han, T.-H. et al. Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nat. Photon. 6, 105–110 (2012).

    Article  CAS  Google Scholar 

  • Jeong, S.-H. et al. Characterizing the efficiency of perovskite solar cells and light-emitting diodes. Joule 4, 1206–1235 (2020).

    Article  CAS  Google Scholar 

  • Furno, M., Meerheim, R., Hofmann, S., Lüssem, B. & Leo, K. Efficiency and rate of spontaneous emission in organic electroluminescent devices. Phys. Rev. B 85, 115205 (2012).

    Article  Google Scholar 

  • Moon, C.-K., Kim, S.-Y., Lee, J.-H. & Kim, J.-J. Luminescence from oriented emitting dipoles in a birefringent medium. Opt. Express 23, A279–A291 (2015).

    Article  Google Scholar 

  • Kim, K. H. et al. Phosphorescent dye-based supramolecules for high-efficiency organic light-emitting diodes. Nat. Commun. 5, 4769 (2014).

    Article  CAS  Google Scholar 

  • Lee, J. et al. Synergetic electrode architecture for efficient graphene-based flexible organic light-emitting diodes. Nat. Commun. 7, 11791 (2016).

    Article  CAS  Google Scholar 

  • Cho, C. et al. The role of photon recycling in perovskite light-emitting diodes. Nat. Commun. 11, 611 (2020).

    Article  CAS  Google Scholar 

  • Zou, Y. et al. High-performance narrowband pure-red OLEDs with external quantum efficiencies up to 36.1% and ultralow efficiency roll-off. Adv. Mater. 34, 2201442 (2022).

    Article  CAS  Google Scholar 

  • Time Stamp:

    More from Nature Nanotechnology