Dynamic topological domain walls driven by lithium intercalation in graphene - Nature Nanotechnology

Dynamic topological domain walls driven by lithium intercalation in graphene – Nature Nanotechnology

Source Node: 2785118
  • Fu, L., Kane, C. L. & Mele, E. J. Topological insulators in three dimensions. Phys. Rev. Lett. 98, 106803 (2007).

    Article  Google Scholar 

  • Son, Y. W., Choi, S. M., Hong, Y. P., Woo, S. & Jhi, S. H. Electronic topological transition in sliding bilayer graphene. Phys. Rev. B 84, 155410 (2011).

    Article  Google Scholar 

  • Ju, L. et al. Topological valley transport at bilayer graphene domain walls. Nature 520, 650–655 (2015).

    Article  CAS  Google Scholar 

  • Hsu, Y. F. & Guo, G. Y. Anomalous integer quantum Hall effect in AA-stacked bilayer graphene. Phys. Rev. B 82, 165404 (2010).

    Article  Google Scholar 

  • Zhang, F., MacDonald, A. H. & Mele, E. J. Valley Chern numbers and boundary modes in gapped bilayer graphene. Proc. Natl Acad. Sci. USA 110, 10546–10551 (2013).

    Article  CAS  Google Scholar 

  • Huang, S. et al. Topologically protected helical states in minimally twisted bilayer graphene. Phys. Rev. Lett. 121, 037702 (2018).

    Article  CAS  Google Scholar 

  • Li, J. et al. Gate-controlled topological conducting channels in bilayer graphene. Nat. Nanotechnol. 11, 1060–1065 (2016).

    Article  CAS  Google Scholar 

  • Chen, X. D. et al. High-precision twist-controlled bilayer and trilayer graphene. Adv. Mater. 28, 2563–2570 (2016).

    Article  CAS  Google Scholar 

  • Caffrey, N. M. et al. Structural and electronic properties of Li-intercalated graphene on SiC(0001). Phys. Rev. B 93, 195421 (2016).

    Article  Google Scholar 

  • Dresselhaus, M. S. & Dresselhaus, G. Intercalation compounds of graphite. Adv. Phys. 30, 139–326 (1981).

    Article  CAS  Google Scholar 

  • Lorenzo, M., Escher, C., Latychevskaia, T. & Fink, H. W. Metal adsorption and nucleation on free-standing graphene by low-energy electron point source microscopy. Nano Lett. 18, 3421–3427 (2018).

    Article  CAS  Google Scholar 

  • Wan, W. et al. Design and commissioning of an aberration-corrected ultrafast spin-polarized low energy electron microscope with multiple electron sources. Ultramicroscopy 174, 89–96 (2017).

    Article  CAS  Google Scholar 

  • First, P. N. et al. Epitaxial graphenes on silicon carbide. MRS Bull. 35, 296–305 (2010).

    Article  CAS  Google Scholar 

  • Hibino, H., Mizuno, S., Kageshima, H., Nagase, M. & Yamaguchi, H. Stacking domains of epitaxial few-layer graphene on SiC(0001). Phys. Rev. B 80, 085406 (2009).

    Article  Google Scholar 

  • de Jong, T. A. et al. Intrinsic stacking domains in graphene on silicon carbide: a pathway for intercalation. Phys. Rev. Mater. 2, 104005 (2018).

    Article  Google Scholar 

  • Chung, W. & Altman, M. Step contrast in low energy electron microscopy. Ultramicroscopy 74, 237–246 (1998).

    Article  CAS  Google Scholar 

  • Mathieu, C. et al. Effect of oxygen adsorption on the local properties of epitaxial graphene on SiC (0001). Phys. Rev. B 86, 035435 (2012).

    Article  Google Scholar 

  • Alden, J. S. et al. Strain solitons and topological defects in bilayer graphene. Proc. Natl Acad. Sci. USA 110, 11256–11260 (2013).

    Article  CAS  Google Scholar 

  • Butz, B. et al. Dislocations in bilayer graphene. Nature 505, 533–537 (2014).

    Article  CAS  Google Scholar 

  • Lin, J. et al. AC/AB stacking boundaries in bilayer graphene. Nano Lett. 13, 3262–3268 (2013).

    Article  CAS  Google Scholar 

  • Virojanadara, C., Watcharinyanon, S., Zakharov, A. A. & Johansson, L. I. Epitaxial graphene on 6H-SiC and Li intercalation. Phys. Rev. B 82, 205402 (2010).

    Article  Google Scholar 

  • Gadelha, A. C. et al. Localization of lattice dynamics in low-angle twisted bilayer graphene. Nature 590, 405–409 (2021).

    Article  CAS  Google Scholar 

  • Hull, D. & Bacon, D. J. Introduction to Dislocations Vol. 37 (Elsevier, 2011).

  • Yang, H., Kim, S., Chhowalla, M. & Lee, Y. Structural and quantum-state phase transitions in van der Waals layered materials. Nat. Phys. 13, 931–937 (2017).

    Article  CAS  Google Scholar 

  • Xi, X., Ma, J., Wan, S., Dong, C. & Sun, X. Observation of chiral edge states in gapped nanomechanical graphene. Sci. Adv. 7, eabe1398 (2021).

    Article  CAS  Google Scholar 

  • Yao, W., Yang, S. A. & Niu, Q. Edge states in graphene: from gapped flat-band to gapless chiral modes. Phys. Rev. Lett. 102, 096801 (2009).

    Article  Google Scholar 

  • Wang, C., Gao, Y., Lv, H., Xu, X. & Xiao, D. Stacking domain wall magnons in twisted van der Waals magnets. Phys. Rev. Lett. 125, 247201 (2020).

    Article  CAS  Google Scholar 

  • Tong, Q., Liu, F., Xiao, J. & Yao, W. Skyrmions in the Moiré of van der Waals 2D magnets. Nano Lett. 18, 7194–7199 (2008).

    Article  Google Scholar 

  • Amelinckx, S. & Delavignette, P. Observation of dislocations in non-metallic layer structures. Nature 185, 603–604 (1960).

    Article  CAS  Google Scholar 

  • Zhou, J. et al. Layered intercalation materials. Adv. Mater. 33, 2004557 (2021).

    Article  CAS  Google Scholar 

  • Wang, H. et al. Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction. Proc. Natl Acad. Sci. USA 110, 19701–19706 (2013).

    Article  CAS  Google Scholar 

  • Kwabena Bediako, D. et al. Heterointerface effects in the electrointercalation of van der Waals heterostructures. Nature 558, 425–429 (2018).

    Article  Google Scholar 

  • Frank Zhao, S. et al. Controlled electrochemical intercalation of graphene/h-BN van der Waals heterostructures. Nano Lett. 18, 460–466 (2018).

    Article  Google Scholar 

  • Delavignette, P. & Amelinckx, S. Dislocation patterns in graphite. J. Nucl. Mater. 5, 17–66 (1962).

    Article  Google Scholar 

  • Williamson, G. K. Electron microscope studies of dislocation structures in graphite. Proc. R. Soc. Lond. A 257, 457–463 (1960).

    Article  CAS  Google Scholar 

  • Hibino, H. et al. Microscopic thickness determination of thin graphite films formed on SiC from quantized oscillation in reflectivity of low-energy electrons. Phys. Rev. B 77, 075413 (2008).

    Article  Google Scholar 

  • Fiori, S. et al. Li-intercalated graphene on SiC(0001): an STM study. Phys. Rev. B 96, 125429 (2017).

    Article  Google Scholar 

  • Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article  CAS  Google Scholar 

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  • Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

    Article  Google Scholar 

  • Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  Google Scholar 

  • Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    Article  CAS  Google Scholar 

  • Raju, M., Ganesh, P., Kent, P. R. & van Duin, A. C. Reactive force field study of Li/C systems for electrical energy storage. J. Chem. Theory Comput. 11, 2156–2166 (2015).

    Article  CAS  Google Scholar 

  • Endo, Y. et al. Data Underlying the Paper: Dynamic Topological Domain Walls Driven by Lithium Intercalation in Graphene (ScienceDB, 2023); https://doi.org/10.57760/sciencedb.07810

  • Time Stamp:

    More from Nature Nanotechnology