Switchable moiré potentials in ferroelectric WTe2/WSe2 superlattices

Switchable moiré potentials in ferroelectric WTe2/WSe2 superlattices

Source Node: 2617002
  • Qi, L., Ruan, S. C. & Zeng, Y. J. Review on recent developments in 2D ferroelectrics: theories and applications. Adv. Mater. 33, 2005098 (2021).

    Article  CAS  Google Scholar 

  • Chang, K. et al. Discovery of robust in-plane ferroelectricity in atomic-thick SnTe. Science 353, 274–278 (2016).

    Article  CAS  Google Scholar 

  • Liu, F. C. et al. Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes. Nat. Commun. 7, 12357 (2016).

    Article  CAS  Google Scholar 

  • Fei, Z. Y. et al. Ferroelectric switching of a two-dimensional metal. Nature 560, 336 (2018).

    Article  CAS  Google Scholar 

  • Li, L. & Wu, M. H. Binary compound bilayer and multilayer with vertical polarizations: two-dimensional ferroelectrics, multiferroics, and nanogenerators. ACS Nano 11, 6382–6388 (2017).

    Article  CAS  Google Scholar 

  • Yang, Q., Wu, M. H. & Li, J. Origin of two-dimensional vertical ferroelectricity in WTe2 bilayer and multilayer. J. Phys. Chem. Lett. 9, 7160–7164 (2018).

    Article  CAS  Google Scholar 

  • Ferreira, F., Enaldiev, V. V., Fal’ko, V. I. & Magorrian, S. J. Weak ferroelectric charge transfer in layer-asymmetric bilayers of 2D semiconductors. Sci. Rep. 11, 13422 (2021).

    Article  CAS  Google Scholar 

  • Zheng, Z. et al. Unconventional ferroelectricity in moire heterostructures. Nature 588, 71–76 (2020).

    Article  CAS  Google Scholar 

  • Yasuda, K., Wang, X. R., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Stacking-engineered ferroelectricity in bilayer boron nitride. Science 372, 1458 (2021).

    Article  CAS  Google Scholar 

  • Wang, X. R. et al. Interfacial ferroelectricity in rhombohedral-stacked bilayer transition metal dichalcogenides. Nat. Nanotechnol. 17, 367 (2022).

    Article  CAS  Google Scholar 

  • Weston, A. et al. Interfacial ferroelectricity in marginally twisted 2D semiconductors. Nat. Nanotechnol. 17, 390 (2022).

    Article  CAS  Google Scholar 

  • Stern, M. V. et al. Interfacial ferroelectricity by van der Waals sliding. Science 372, 1462 (2021).

    Article  Google Scholar 

  • Liu, Y., Liu, S., Li, B. C., Yoo, W. J. & Hone, J. Identifying the transition order in an artificial ferroelectric van der Waals heterostructure. Nano. Lett. 22, 1265–1269 (2022).

    Article  CAS  Google Scholar 

  • Brown, B. E. Crystal structures of WTe2 and high-temperature MoTe2. Acta Crystallogr. 20, 268 (1966).

    Article  CAS  Google Scholar 

  • Fei, Z. Y. et al. Edge conduction in monolayer WTe2. Nat. Phys. 13, 677 (2017).

    Article  CAS  Google Scholar 

  • Wu, S. F. et al. Observation of the quantum spin Hall effect up to 100 kelvin in a monolayer crystal. Science 359, 76–79 (2018).

    Article  CAS  Google Scholar 

  • Zhao, W. J. et al. Determination of the spin axis in quantum spin hall insulator candidate monolayer WTe2. Phys. Rev. X 11, 041034 (2021).

    CAS  Google Scholar 

  • Sakai, H. et al. Critical enhancement of thermopower in a chemically tuned polar semimetal MoTe2. Sci. Adv. 2, 11 (2016).

    Article  Google Scholar 

  • Sodemann, I. & Fu, L. Quantum nonlinear Hall effect induced by Berry curvature dipole in time-reversal invariant materials. Phys. Rev. Lett. 115, 216806 (2015).

    Article  Google Scholar 

  • Ma, Q. et al. Observation of the nonlinear Hall effect under time-reversal-symmetric conditions. Nature 565, 337 (2019).

    Article  CAS  Google Scholar 

  • Kang, K. F., Li, T. X., Sohn, E., Shan, J. & Mak, K. F. Nonlinear anomalous Hall effect in few-layer WTe2. Nat. Mater. 18, 324 (2019).

    Article  CAS  Google Scholar 

  • Du, Z. Z., Lu, H. Z. & Xie, X. C. Nonlinear Hall effects. Nat. Rev. Phys. 3, 744–752 (2021).

    Article  Google Scholar 

  • Xu, S. Y. et al. Electrically switchable Berry curvature dipole in the monolayer topological insulator WTe2. Nat. Phys. 14, 900 (2018).

    Article  CAS  Google Scholar 

  • Qian, X. F., Liu, J. W., Fu, L. & Li, J. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 346, 1344–1347 (2014).

    Article  CAS  Google Scholar 

  • Chen, Z. S. et al. Tunable electronic structure in twisted WTe2/WSe2 heterojunction bilayer. AIP Adv. 12, 045315 (2022).

    Article  CAS  Google Scholar 

  • Xie, Y. et al. Gate-tunable van der Waals heterostructure based on semimetallic WTe2 and semiconducting MoTe2. Appl. Phys. Lett. 118, 133103 (2021).

    Article  CAS  Google Scholar 

  • Andrei, E. Y. & MacDonald, A. H. Graphene bilayers with a twist. Nat. Mater. 19, 1265–1275 (2020).

    Article  CAS  Google Scholar 

  • Balents, L., Dean, C. R., Efetov, D. K. & Young, A. F. Superconductivity and strong correlations in moiré flat bands. Nat. Phys. 16, 725–733 (2020).

    Article  CAS  Google Scholar 

  • Mak, K. F. & Shan, J. Semiconductor moiré materials. Nat. Nanotechnol. 17, 686–695 (2022).

    Article  CAS  Google Scholar 

  • Kennes, D. M. et al. Moiré heterostructures as a condensed-matter quantum simulator. Nat. Phys. 17, 155–163 (2021).

    Article  CAS  Google Scholar 

  • Andrei, E. Y. et al. The marvels of moiré materials. Nat. Rev. Mater. 6, 201–206 (2021).

    Article  CAS  Google Scholar 

  • Liu, Y. Y., Stradins, P. & Wei, S. H. Van der Waals metal–semiconductor junction: weak Fermi level pinning enables effective tuning of Schottky barrier. Sci. Adv. 2, 4 (2016).

    Article  Google Scholar 

  • Lv, H. Y. et al. Perfect charge compensation in WTe2 for the extraordinary magnetoresistance: from bulk to monolayer. Europhys. Lett. 110, 37004 (2015).

    Article  Google Scholar 

  • Sharma, P. et al. A room-temperature ferroelectric semimetal. Sci. Adv. 5, 7 (2019).

    Article  Google Scholar 

  • Enaldiev, V. V., Ferreira, F. & Fal’ko, V. I. A scalable network model for electrically tunable ferroelectric domain structure in twistronic bilayers of two-dimensional semiconductors. Nano. Lett. 22, 1534–1540 (2022).

    Article  CAS  Google Scholar 

  • Wang, H. & Qian, X. F. Ferroelectric nonlinear anomalous Hall effect in few-layer WTe2. npj Comput. Mater. 5, 119 (2019).

    Article  CAS  Google Scholar 

  • Efros, A. L., Nguyen, V. L. & Shklovskii, B. I. Variable range hopping in doped crystalline semiconductors. Solid State Commun. 32, 851–854 (1979).

    Article  CAS  Google Scholar 

  • Efros, A. L. & Shklovskii, B. I. Coulomb gap and low-temperature conductivity of disordered systems. J. Phys. C 8, 49–51 (1975).

    Article  Google Scholar 

  • Sinha, S. et al. Berry curvature dipole senses topological transition in a moiré superlattice. Nat. Phys. 18, 765 (2022).

    Article  CAS  Google Scholar 

  • He, P. et al. Graphene moiré superlattices with giant quantum nonlinearity of chiral Bloch electrons. Nat. Nanotechnol. 17, 378 (2022).

    Article  CAS  Google Scholar 

  • Zhang, C. P. et al. Giant nonlinear Hall effect in strained twisted bilayer graphene. Phys. Rev. B 106, L041111 (2022).

    Article  CAS  Google Scholar 

  • Xiao, D., Chang, M. C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010).

    Article  CAS  Google Scholar 

  • Saito, Y. et al. Isospin Pomeranchuk effect in twisted bilayer graphene. Nature 592, 220–224 (2021).

    Article  CAS  Google Scholar 

  • Burkov, A. A. & Balents, L. Anomalous Hall effect in ferromagnetic semiconductors in the hopping transport regime. Phys. Rev. Lett. 91, 057202 (2003).

    Article  CAS  Google Scholar 

  • Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    Article  CAS  Google Scholar 

  • Tang, Y. H. et al. Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices. Nature 579, 353–358 (2020).

  • Zhu, J. C., Li, T. X., Young, A. F., Shan, J. & Mak, K. F. Quantum oscillations in two-dimensional insulators induced by graphite gates. Phys. Rev. Lett. 127, 247702 (2021).

    Article  CAS  Google Scholar 

  • Wang, P. J. et al. Landau quantization and highly mobile fermions in an insulator. Nature 589, 225–229 (2021); erratum 591, E17 (2021).

    Article  CAS  Google Scholar 

  • Jia, Y. Y. et al. Evidence for a monolayer excitonic insulator. Nat. Phys. 18, 87 (2022).

    Article  CAS  Google Scholar 

  • Time Stamp:

    More from Nature Nanotechnology