Atomically precise vacancy-assembled quantum antidots - Nature Nanotechnology

Atomically precise vacancy-assembled quantum antidots – Nature Nanotechnology

Source Node: 2858164
  • Fuechsle, M. et al. A single-atom transistor. Nat. Nanotechnol. 7, 242–246 (2012).

    Article  CAS  Google Scholar 

  • Huff, T. et al. Binary atomic silicon logic. Nat. Electron. 1, 636–643 (2018).

    Article  Google Scholar 

  • Achal, R. et al. Lithography for robust and editable atomic-scale silicon devices and memories. Nat. Commun. 9, 2778 (2018).

    Article  Google Scholar 

  • Kalff, F. E. et al. A kilobyte rewritable atomic memory. Nat. Nanotechnol. 11, 926–929 (2016).

    Article  CAS  Google Scholar 

  • Amlani, I. et al. Digital logic gate using quantum-dot cellular automata. Science 284, 289–291 (1999).

    Article  CAS  Google Scholar 

  • Imre, A. et al. Majority logic gate for magnetic quantum-dot cellular automata. Science 311, 205–208 (2006).

    Article  CAS  Google Scholar 

  • Kim, D. et al. Quantum control and process tomography of a semiconductor quantum dot hybrid qubit. Nature 511, 70–74 (2014).

    Article  CAS  Google Scholar 

  • Fölsch, S., Martínez-Blanco, J., Yang, J., Kanisawa, K. & Erwin, S. C. Quantum dots with single-atom precision. Nat. Nanotechnol. 9, 505–508 (2014).

    Article  Google Scholar 

  • Du, A. et al. Dots versus antidots: computational exploration of structure, magnetism, and half-metallicity in boron-nitride nanostructures. J. Am. Chem. Soc. 131, 17354–17359 (2009).

    Article  CAS  Google Scholar 

  • Mitterreiter, E. et al. The role of chalcogen vacancies for atomic defect emission in MoS2. Nat. Commun. 12, 3822 (2021).

    Article  CAS  Google Scholar 

  • Flindt, C., Mortensen, N. A. & Jauho, A.-P. Quantum computing via defect states in two-dimensional antidot lattices. Nano Lett. 5, 2515–2518 (2005).

    Article  CAS  Google Scholar 

  • Pedersen, T. G. et al. Graphene antidot lattices: designed defects and spin qubits. Phys. Rev. Lett. 100, 136804 (2008).

    Article  Google Scholar 

  • Besteiro, L. V., Kong, X.-T., Wang, Z., Hartland, G. & Govorov, A. O. Understanding hot-electron generation and plasmon relaxation in metal nanocrystals: quantum and classical mechanisms. ACS Photon. 4, 2759–2781 (2017).

    Article  CAS  Google Scholar 

  • Zhang, H. et al. Large-scale mesoscopic transport in nanostructured graphene. Phys. Rev. Lett. 110, 066805 (2013).

    Article  Google Scholar 

  • Clavero, C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photon. 8, 95–103 (2014).

    Article  CAS  Google Scholar 

  • Goldman, V. J. & Su, B. Resonant tunneling in the quantum hall regime: measurement of fractional charge. Science 267, 1010–1012 (1995).

    Article  CAS  Google Scholar 

  • Maasilta, I. J. & Goldman, V. J. Tunneling through a coherent ‘quantum antidot molecule’. Phys. Rev. Lett. 84, 1776–1779 (2000).

    Article  CAS  Google Scholar 

  • Sim, H.-S. et al. Coulomb blockade and kondo effect in a quantum Hall antidot. Phys. Rev. Lett. 91, 266801 (2003).

    Article  Google Scholar 

  • Park, M., Harrison, C., Chaikin, P. M., Register, R. A. & Adamson, D. H. Block copolymer lithography: periodic arrays of ~1011 holes in 1 square centimeter. Science 276, 1401–1404 (1997).

    Article  CAS  Google Scholar 

  • Sinitskii, A. & Tour, J. M. Patterning graphene through the self-assembled templates: toward periodic two-dimensional graphene nanostructures with semiconductor properties. J. Am. Chem. Soc. 132, 14730–14732 (2010).

    Article  CAS  Google Scholar 

  • Sandner, A. et al. Ballistic transport in graphene antidot lattices. Nano Lett. 15, 8402–8406 (2015).

    Article  CAS  Google Scholar 

  • Jessen, B. S. et al. Lithographic band structure engineering of graphene. Nat. Nanotechnol. 14, 340–346 (2019).

    Article  CAS  Google Scholar 

  • Khajetoorians, A. A., Wegner, D., Otte, A. F. & Swart, I. Creating designer quantum states of matter atom-by-atom. Nat. Rev. Phys. 1, 703–715 (2019).

    Article  Google Scholar 

  • Gomes, K. K., Mar, W., Ko, W., Guinea, F. & Manoharan, H. C. Designer Dirac fermions and topological phases in molecular graphene. Nature 483, 306–310 (2012).

    Article  CAS  Google Scholar 

  • Slot, M. R. et al. Experimental realization and characterization of an electronic Lieb lattice. Nat. Phys. 13, 672–676 (2017).

    Article  CAS  Google Scholar 

  • Kempkes, S. N. et al. Design and characterization of electrons in a fractal geometry. Nat. Phys. 15, 127–131 (2019).

    Article  CAS  Google Scholar 

  • Drost, R., Ojanen, T., Harju, A. & Liljeroth, P. Topological states in engineered atomic lattices. Nat. Phys. 13, 668–671 (2017).

    Article  CAS  Google Scholar 

  • Xu, J. et al. Quantum antidot formation and correlation to optical shift of gold nanoparticles embedded in MgO. Phys. Rev. Lett. 88, 175502 (2002).

    Article  Google Scholar 

  • Liu, Y., Xu, F., Zhang, Z., Penev, E. S. & Yakobson, B. I. Two-dimensional mono-elemental semiconductor with electronically inactive defects: the case of phosphorus. Nano Lett. 14, 6782–6786 (2014).

    Article  CAS  Google Scholar 

  • Nguyen, G. D. et al. 3D imaging and manipulation of subsurface selenium vacancies in PdSe2. Phys. Rev. Lett. 121, 086101 (2018).

    Article  CAS  Google Scholar 

  • Liu, M., Nam, H., Kim, J., Fiete, G. A. & Shih, C.-K. Influence of nanosize hole defects and their geometric arrangements on the superfluid density in atomically thin single crystals of indium superconductor. Phys. Rev. Lett. 127, 127003 (2021).

    Article  CAS  Google Scholar 

  • Li, X. et al. Ordered clustering of single atomic Te vacancies in atomically thin PtTe2 promotes hydrogen evolution catalysis. Nat. Commun. 12, 2351 (2021).

    Article  CAS  Google Scholar 

  • Zhussupbekov, K. et al. Imaging and identification of point defects in PtTe2. npj 2D Mater. Appl. 5, 14 (2021).

    Article  CAS  Google Scholar 

  • Leo, G., Fabian, M., Nikolaj, M., Peter, L. & Gerhard, M. The chemical structure of a molecule resolved by atomic force microscopy. Science 325, 1110–1114 (2009).

    Article  Google Scholar 

  • Barja, S. et al. Identifying substitutional oxygen as a prolific point defect in monolayer transition metal dichalcogenides. Nat. Commun. 10, 3382 (2019).

    Article  Google Scholar 

  • Schuler, B. et al. How substitutional point defects in two-dimensional WS2 induce charge localization, spin–orbit splitting, and strain. ACS Nano 13, 10520–10534 (2019).

    Article  CAS  Google Scholar 

  • Cochrane, K. A. et al. Spin-dependent vibronic response of a carbon radical ion in two-dimensional WS2. Nat. Commun. 12, 7287 (2021).

    Article  CAS  Google Scholar 

  • Guo, G. Y. & Liang, W. Y. The electronic structures of platinum dichalcogenides: PtS2, PtSe2 and PtTe2. J. Phys. C: Solid State Phys. 19, 995 (1986).

    Article  CAS  Google Scholar 

  • Aghajanian, M. et al. Resonant and bound states of charged defects in two-dimensional semiconductors. Phys. Rev. B 101, 081201 (2020).

    Article  CAS  Google Scholar 

  • Fang, H. et al. Electronic self-passivation of single vacancy in black phosphorus via ionization. Phys. Rev. Lett. 128, 176801 (2022).

    Article  CAS  Google Scholar 

  • Schuler, B. et al. Large spin-orbit splitting of deep in-gap defect states of engineered sulfur vacancies in monolayer WS2. Phys. Rev. Lett. 123, 076801 (2019).

    Article  CAS  Google Scholar 

  • Gross, L. et al. Investigating atomic contrast in atomic force microscopy and Kelvin probe force microscopy on ionic systems using functionalized tips. Phys. Rev. B 90, 155455 (2014).

    Article  Google Scholar 

  • Cai, Y., Ke, Q., Zhang, G., Yakobson, B. I. & Zhang, Y.-W. Highly itinerant atomic vacancies in phosphorene. J. Am. Chem. Soc. 138, 10199–10206 (2016).

    Article  CAS  Google Scholar 

  • Trevethan, T., Latham, C. D., Heggie, M. I., Briddon, P. R. & Rayson, M. J. Vacancy diffusion and coalescence in graphene directed by defect strain fields. Nanoscale 6, 2978–2986 (2014).

    Article  CAS  Google Scholar 

  • Ishizuka, H. & Nagaosa, N. Spin chirality induced skew scattering and anomalous Hall effect in chiral magnets. Sci. Adv. 4, eaap9962 (2018).

    Article  Google Scholar 

  • Fujishiro, Y. et al. Giant anomalous Hall effect from spin-chirality scattering in a chiral magnet. Nat. Commun. 12, 317 (2021).

    Article  CAS  Google Scholar 

  • Arh, T. et al. The Ising triangular-lattice antiferromagnet neodymium heptatantalate as a quantum spin liquid candidate. Nat. Mater. 21, 416–422 (2022).

    Article  CAS  Google Scholar 

  • Bezanson, J., Edelman, A., Karpinski, S. & Shah, V. B. Julia: a fresh approach to numerical computing. SIAM Rev. 59, 65–98 (2017).

    Article  Google Scholar 

  • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  • Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  • Moellmann, J. & Grimme, S. DFT-D3 study of some molecular crystals. J. Phys. Chem. C 118, 7615–7621 (2014).

    Article  CAS  Google Scholar 

  • Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    Article  CAS  Google Scholar 

  • Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Article  Google Scholar 

  • Giannozzi, P. et al. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter 29, 465901 (2017).

    Article  CAS  Google Scholar 

  • Dal Corso, A. Pseudopotentials periodic table: from H to Pu. Comput. Mater. Sci. 95, 337–350 (2014).

    Article  CAS  Google Scholar 

  • Time Stamp:

    More from Nature Nanotechnology