Next-generation protein-based materials capture and preserve projectiles from supersonic impacts - Nature Nanotechnology

Next-generation protein-based materials capture and preserve projectiles from supersonic impacts – Nature Nanotechnology

Source Node: 2747416
  • Qiao, P. Z., Yang, M. J. & Bobaru, F. Impact mechanics and high-energy absorbing materials: review. J. Aerosp. Eng. 21, 235–248 (2008).

    Article  Google Scholar 

  • Dyatkin, B. US hypersonics initiatives require accelerated efforts of the materials research community. MRS Bull. 46, 201–203 (2021).

    Article  Google Scholar 

  • Viana, J. C. Polymeric materials for impact and energy dissipation. Plast. Rubber Compos. 35, 260–267 (2006).

    Article  CAS  Google Scholar 

  • Park, J. L., Chi, Y. S., Hahn, M. H. & Kang, T. J. Kinetic dissipation in ballistic tests of soft body armors. Exp. Mech. 52, 1239–1250 (2012).

    Article  Google Scholar 

  • Fejdys, M., Kosla, K., Kucharska-Jastrzabek, A. & Landwijt, M. Influence of ceramic properties on the ballistic performance of the hybrid ceramic-multi-layered UHMWPE composite armour. J. Aust. Ceram. Soc. 57, 149–161 (2021).

    Article  CAS  Google Scholar 

  • Reis, R. H. M. et al. Ballistic performance of guaruman fiber composites in multilayered armor system and as single target. Polymers 13, 1203 (2021).

  • Wen, Y. K., Xu, C., Wang, S. & Batra, R. C. Analysis of behind the armor ballistic trauma. J. Mech. Behav. Biomed. Mater. 45, 11–21 (2015).

    Article  CAS  Google Scholar 

  • Kearsley, A. T. How laboratory hypervelocity impact experiments have helped us to understand comet dust samples: a brief review. Procedia Eng. 204, 43–50 (2017).

    Article  CAS  Google Scholar 

  • Woignier, T., Duffours, L., Colombel, P. & Durin, C. Aerogels materials as space debris collectors. Adv. Mater. Sci. Eng. 2013, 484153 (2013).

    Article  Google Scholar 

  • Jones, S. M., Anderson, M. S., Dominguez, G. & Tsapin, A. Thermal calibrations of hypervelocity capture in aerogel using magnetic iron oxide particles. Icarus 226, 1–9 (2013).

    Article  CAS  Google Scholar 

  • Alwin, S. & Shajan, X. S. Aerogels: promising nanostructured materials for energy conversion and storage applications. Mater. Renew. Sustain. Energy 9, 7 (2020).

    Article  Google Scholar 

  • Bheekhun, N., Abu Talib, A. & Hassan, M. R. Aerogels in aerospace: an overview. Adv. Mater. Sci. Eng. 2013, 406065 (2013).

    Article  Google Scholar 

  • Kan, A. & Joshi, N. S. Towards the directed evolution of protein materials. MRS Commun. 9, 441–455 (2019).

    Article  CAS  Google Scholar 

  • Wu, J. H. et al. Rationally designed synthetic protein hydrogels with predictable mechanical properties. Nat. Commun. 9, 620 (2018).

    Article  Google Scholar 

  • Fang, J. et al. Forced protein unfolding leads to highly elastic and tough protein hydrogels. Nat. Commun. 4, 2974 (2013).

    Article  Google Scholar 

  • Zhu, F. B. et al. 3D-printed ultratough hydrogel structures with titin-like domains. ACS Appl. Mater. Interfaces 9, 11363–11367 (2017).

    Article  CAS  Google Scholar 

  • Bate, N. et al. Talin contains a C-terminal calpain2 cleavage site important in focal adhesion dynamics. PLoS ONE 7, e34461 (2012).

  • Yao, M. X. et al. The mechanical response of talin. Nat. Commun. 7, 11966 (2016).

  • Funtan, S., Michael, P. & Binder, W. H. Synthesis and mechanochemical activity of peptide-based Cu(I) bis(N-heterocyclic carbene) complexes. Biomimetics 4, 24 (2019).

    Article  Google Scholar 

  • Goult, B. T. et al. RIAM and vinculin binding to talin are mutually exclusive and regulate adhesion assembly and turnover. J. Biol. Chem. 288, 8238–8249 (2013).

    Article  CAS  Google Scholar 

  • Schon, A., Clarkson, B. R., Jaime, M. & Freire, E. Temperature stability of proteins: analysis of irreversible denaturation using isothermal calorimetry. Proteins Struct. Funct. Bioinform. 85, 2009–2016 (2017).

    Article  Google Scholar 

  • Jackson, M. & Mantsch, H. H. The use and misuse of FTIR spectroscopy in the determination of protein-structure. Crit. Rev. Biochem. Mol. Biol. 30, 95–120 (1995).

    Article  CAS  Google Scholar 

  • Öhrlund, Å. Evaluation of rheometry amplitude sweep cross-over point as an index of flexibility for HA fillers. J. Cosmet. Dermatol. Sci. Appl. 8, 47–54 (2018).

    Google Scholar 

  • Kulkarni, V. S. & Shaw, C. in Essential Chemistry for Formulators of Semisolid and Liquid Dosages (eds Kulkarni, V. S. & Shaw, C.) 145–182 (Academic Press, 2016).

  • Wen, Q. & Janmey, P. A. Polymer physics of the cytoskeleton. Curr. Opin. Solid State Mater. Sci. 15, 177–182 (2011).

    Article  CAS  Google Scholar 

  • Yao, M. X. et al. Mechanical activation of vinculin binding to talin locks talin in an unfolded conformation. Sci. Rep. 4, 4610 (2014).

  • Williamsen, J., Pechkis, D., Balakrishnan, A. & Ouelette, S. In Proc. First International Orbital Debris Conference (Lunar and Planetary Institute, 2019).

  • Couldrick, C. in Advances in Military Textiles and Personal Equipment (ed. Sparks, E.) 196–212 (Woodhead Publishing, 2012).

  • Veysset, D. et al. High-velocity micro-particle impact on gelatin and synthetic hydrogel. J. Mech. Behav. Biomed. Mater. 86, 71–76 (2018).

    Article  CAS  Google Scholar 

  • Kokol, V., Pottathara, Y. B., Mihelčič, M. & Perše, L. S. Rheological properties of gelatine hydrogels affected by flow- and horizontally-induced cooling rates during 3D cryo-printing. Colloids Surf. A 616, 126356 (2021).

  • Barnett, S. F. H. & Goult, B. T. The MeshCODE to scale–visualising synaptic binary information. Front. Cell. Neurosci. 16, 1014629 (2022).

  • Dedden, D. et al. The architecture of Talin1 reveals an autoinhibition mechanism. Cell 179, 120–131 (2019).

    Article  CAS  Google Scholar 

  • Fillingham, I. et al. A vinculin binding domain from the talin rod unfolds to form a complex with the vinculin head. Structure 13, 65–74 (2005).

    Article  CAS  Google Scholar 

  • Burchell, M. J., Cole, M. J., McDonnell, J. A. M. & Zarnecki, J. C. Hypervelocity impact studies using the 2 MV Van de Graaff accelerator and two-stage light gas gun of the University of Kent at Canterbury. Meas. Sci. Technol. 10, 41–50 (1999).

    Article  CAS  Google Scholar 

  • Hibbert, R., Cole, M. J., Price, M. C. & Burchell, M. J. The hypervelocity impact facility at the University of Kent: recent upgrades and specialized capabilities. Procedia Eng. 204, 208–214 (2017).

    Article  Google Scholar 

  • Time Stamp:

    More from Nature Nanotechnology