Local-orbital ptychography for ultrahigh-resolution imaging - Nature Nanotechnology

Local-orbital ptychography for ultrahigh-resolution imaging – Nature Nanotechnology

Source Node: 3089916
  • Williams, D. B. & Carter, C. B. Transmission Electron Microscopy (Springer, 2009).

  • Haider, M. et al. A spherical-aberration-corrected 200kV transmission electron microscope. Ultramicroscopy 75, 53–60 (1998).

    Article  CAS  Google Scholar 

  • Chen, Z. et al. Electron ptychography achieves atomic-resolution limits set by lattice vibrations. Science 372, 826–831 (2021).

    Article  CAS  Google Scholar 

  • Hoppe, W. Beugung im inhomogenen Primärstrahlwellenfeld. I. Prinzip einer Phasenmessung von Elektronenbeungungsinterferenzen. Acta Crystallogr. A 25, 495–501 (1969).

    Article  Google Scholar 

  • Miao, J., Charalambous, P., Kirz, J. & Sayre, D. Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens. Nature 400, 342–344 (1999).

    Article  CAS  Google Scholar 

  • Rodenburg, J. M. Ptychography and related diffractive imaging methods. Adv. Imaging Electron Phys. 150, 87–184 (2008).

    Article  Google Scholar 

  • Zheng, G., Shen, C., Jiang, S., Song, P. & Yang, C. Concept, implementations and applications of Fourier ptychography. Nat. Rev. Phys. 3, 207–223 (2021).

    Article  Google Scholar 

  • Pfeiffer, F. X-ray ptychography. Nat. Photonics 12, 9–17 (2017).

    Article  Google Scholar 

  • Nellist, P. D., McCallum, B. C. & Rodenburg, J. M. Resolution beyond the ‘information limit’ in transmission electron microscopy. Nature 374, 630–632 (1995).

    Article  CAS  Google Scholar 

  • Maiden, A. M., Humphry, M. J., Zhang, F. & Rodenburg, J. M. Superresolution imaging via ptychography. J. Opt. Soc. Am. A 28, 604–612 (2011).

    Article  Google Scholar 

  • Humphry, M. J., Kraus, B., Hurst, A. C., Maiden, A. M. & Rodenburg, J. M. Ptychographic electron microscopy using high-angle dark-field scattering for sub-nanometre resolution imaging. Nat. Commun. 3, 730 (2012).

    Article  CAS  Google Scholar 

  • Pelz, P. M., Qiu, W. X., Bucker, R., Kassier, G. & Miller, R. J. D. Low-dose cryo electron ptychography via non-convex Bayesian optimization. Sci. Rep. 7, 9883 (2017).

    Article  Google Scholar 

  • Ophus, C. Four-dimensional scanning transmission electron microscopy (4D-STEM): from scanning nanodiffraction to ptychography and beyond. Microsc. Microanal. 25, 563–582 (2019).

    Article  CAS  Google Scholar 

  • Ding, Z. et al. Three-dimensional electron ptychography of organic-inorganic hybrid nanostructures. Nat. Commun. 13, 4787 (2022).

    Article  CAS  Google Scholar 

  • Gao, W. et al. Real-space charge-density imaging with sub-angstrom resolution by four-dimensional electron microscopy. Nature 575, 480–484 (2019).

    Article  CAS  Google Scholar 

  • Kohno, Y., Seki, T., Findlay, S. D., Ikuhara, Y. & Shibata, N. Real-space visualization of intrinsic magnetic fields of an antiferromagnet. Nature 602, 234–239 (2022).

    Article  CAS  Google Scholar 

  • Zachman, M. J. et al. Mapping pm-scale lattice distortions and measuring interlayer separations in stacked 2D materials by interferometric 4D-STEM. Microsc. Microanal. 28, 1752–1754 (2022).

    Article  Google Scholar 

  • Rodenburg, J. M. & Bates, R. H. T. The theory of super-resolution electron microscopy via Wigner-distribution deconvolution. Phil. Trans. R. Soc. Lond. A 339, 521–553 (1997).

    Google Scholar 

  • McCallum, B. C. & Rodenburg, J. M. Two-dimensional demonstration of Wigner phase-retrieval microscopy in the STEM configuration. Ultramicroscopy 45, 371–380 (1992).

    Article  Google Scholar 

  • Chapman, H. N. Phase-retrieval X-ray microscopy by Wigner-distribution deconvolution. Ultramicroscopy 66, 153–172 (1996).

    Article  CAS  Google Scholar 

  • Pennycook, T. J., Martinez, G. T., Nellist, P. D. & Meyer, J. C. High dose efficiency atomic resolution imaging via electron ptychography. Ultramicroscopy 196, 131–135 (2019).

    Article  CAS  Google Scholar 

  • O’Leary, C. M. et al. Phase reconstruction using fast binary 4D STEM data. Appl. Phys. Lett. 116, 124101 (2020).

    Article  Google Scholar 

  • Gao, C. et al. Overcoming contrast reversals in focused probe ptychography of thick materials: an optimal pipeline for efficiently determining local atomic structure in materials science. Appl. Phys. Lett. 121, 081906 (2022).

    Article  CAS  Google Scholar 

  • Elser, V. Phase retrieval by iterated projections. J. Opt. Soc. Am. A 20, 40–55 (2003).

    Article  Google Scholar 

  • Rodenburg, J. M. & Faulkner, H. M. L. A phase retrieval algorithm for shifting illumination. Appl. Phys. Lett. 85, 4795–4797 (2004).

    Article  CAS  Google Scholar 

  • Thibault, P. et al. High-resolution scanning X-ray diffraction microscopy. Science 321, 379–382 (2008).

    Article  CAS  Google Scholar 

  • Maiden, A. M. & Rodenburg, J. M. An improved ptychographical phase retrieval algorithm for diffractive imaging. Ultramicroscopy 109, 1256–1262 (2009).

    Article  CAS  Google Scholar 

  • Maiden, A. M., Humphry, M. J. & Rodenburg, J. M. Ptychographic transmission microscopy in three dimensions using a multi-slice approach. J. Opt. Soc. Am. A 29, 1606–1614 (2012).

    Article  CAS  Google Scholar 

  • Sha, H., Cui, J. & Yu, R. Deep sub-angstrom resolution imaging by electron ptychography with misorientation correction. Sci. Adv. 8, eabn2275 (2022).

    Article  CAS  Google Scholar 

  • Sha, H. et al. Ptychographic measurements of varying size and shape along zeolite channels. Sci. Adv. 9, eadf1151 (2023).

    Article  CAS  Google Scholar 

  • Sha, H. et al. Sub-nanometer-scale mapping of crystal orientation and depth-dependent structure of dislocation cores in SrTiO3. Nat. Commun. 14, 162 (2023).

    Article  CAS  Google Scholar 

  • Dong, Z. et al. Atomic-level imaging of zeolite local structures using electron ptychography. J. Am. Chem. Soc. 145, 6628–6632 (2023).

    Article  CAS  Google Scholar 

  • Zhang, H. et al. Three-dimensional inhomogeneity of zeolite structure and composition revealed by electron ptychography. Science 380, 633–663 (2023).

    Article  CAS  Google Scholar 

  • Cowley, J. M. & Moodie, A. F. The scattering of electrons by atoms and crystals. I. A new theoretical approach. Acta Crystallogr. 10, 609–619 (1957).

    Article  CAS  Google Scholar 

  • Allen, L. J., Alfonso, A. J. D. & Findlay, S. D. Modelling the inelastic scattering of fast electrons. Ultramicroscopy 151, 11–22 (2015).

    Article  CAS  Google Scholar 

  • Odstrcil, M. et al. Ptychographic coherent diffractive imaging with orthogonal probe relaxation. Opt. Express 24, 8360–8369 (2016).

    Article  CAS  Google Scholar 

  • Das, S. et al. Observation of room-temperature polar skyrmions. Nature 568, 368–372 (2019).

    Article  CAS  Google Scholar 

  • Veličkov, B., Kahlenberg, V., Bertram, R. & Bernhagen, M. Crystal chemistry of GdScO3, DyScO3, SmScO3 and NdScO3. Z. Kristallogr. 222, 466–473 (2007).

    Article  Google Scholar 

  • Lee, D. et al. Emergence of room-temperature ferroelectricity at reduced dimensions. Science 349, 1314–1317 (2015).

    Article  CAS  Google Scholar 

  • Gao, P. et al. Atomic mechanism of polarization-controlled surface reconstruction in ferroelectric thin films. Nat. Commun. 7, 11318 (2016).

    Article  CAS  Google Scholar 

  • Kirkland E. J. Advanced Computing in Electron Microscopy (Springer, 2020).

  • Jurling, A. S. & Fienup, J. R. Applications of algorithmic differentiation to phase retrieval algorithms. J. Opt. Soc. Am. A 31, 1348–1359 (2014).

    Article  Google Scholar 

  • Odstrcil, M., Menzel, A. & Guizar-Sicairos, M. Iterative least-squares solver for generalized maximum-likelihood ptychography. Opt. Express 26, 3108–3123 (2018).

    Article  Google Scholar 

  • Pelz, P. M. et al. Phase-contrast imaging of multiply-scattering extended objects at atomic resolution by reconstruction of the scattering matrix. Phys. Rev. Res. 3, 023159 (2021).

    Article  CAS  Google Scholar 

  • Uhlemann, S. & Haider, M. Residual wave aberrations in the first spherical aberration corrected transmission electron microscope. Ultramicroscopy 72, 109–119 (1998).

    Article  CAS  Google Scholar 

  • Krivanek, O. L., Dellby, N. & Lupini, A. R. Towards sub-Å electron beams. Ultramicroscopy 78, 1–11 (1999).

    Article  CAS  Google Scholar 

  • Schwiegerling, J. Review of Zernike polynomials and their use in describing the impact of misalignment in optical systems. In Proc. Optical System Alignment, Tolerancing, and Verification XI (eds Sasián, J. & Youngworth, R. N.) 103770D (SPIE, 2017); https://doi.org/10.1117/12.2275378

  • Bertoni, G. et al. Near-real-time diagnosis of electron optical phase aberrations in scanning transmission electron microscopy using an artificial neural network. Ultramicroscopy 245, 113663 (2023).

    Article  CAS  Google Scholar 

  • Paszke, A. et al. PyTorch: an imperative style, high-performance deep learning library. In Proc. 33rd International Conference on Neural Information Processing Systems (eds Wallach, H. M., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F. & Fox, E. B.) 721 (Curran Associates, 2019).

  • Burdet, N. et al. Evaluation of partial coherence correction in X-ray ptychography. Opt. Express 23, 5452–5467 (2015).

    Article  CAS  Google Scholar 

  • Nellist, P. D. & Rodenburg, J. M. Beyond the conventional information limit: the relevant coherence function. Ultramicroscopy 54, 61–74 (1994).

    Article  Google Scholar 

  • Yang, W., Sha, H. & Yu, R. 4D datasets used for local-orbital ptychographic reconstruction [data set]. Zenodo https://doi.org/10.5281/zenodo.10246206 (2023).

  • Time Stamp:

    More from Nature Nanotechnology