Low Ohmic contact resistance and high on/off ratio in transition metal dichalcogenides field-effect transistors via residue-free transfer - Nature Nanotechnology

Low Ohmic contact resistance and high on/off ratio in transition metal dichalcogenides field-effect transistors via residue-free transfer – Nature Nanotechnology

Source Node: 2863980
  • Liu, C. et al. Two-dimensional materials for next-generation computing technologies. Nat. Nanotechnol. 15, 545–557 (2020).

    Article  CAS  Google Scholar 

  • Jung, S.-G., Kim, J.-K. & Yu, H.-Y. Analytical model of contact resistance in vertically stacked nanosheet FETs for sub-3-nm technology node. IEEE Trans. Electron Devices 69, 930–935 (2022).

    Article  CAS  Google Scholar 

  • Watson, A. J., Lu, W., Guimarães, M. H. D. & Stöhr, M. Transfer of large-scale two-dimensional semiconductors: challenges and developments. 2D Mater. 8, 032001 (2021).

    Article  CAS  Google Scholar 

  • Zhang, S. et al. Wafer-scale transferred multilayer MoS2 for high performance field effect transistors. Nanotechnology 30, 174002 (2019).

    Article  CAS  Google Scholar 

  • Lee, J. S. et al. Wafer-scale single-crystal hexagonal boron nitride film via self-collimated grain formation. Science 362, 817–821 (2018).

    Article  CAS  Google Scholar 

  • Li, T. et al. Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol. 16, 1201–1207 (2021).

    Article  CAS  Google Scholar 

  • Leong, W. S. et al. Paraffin-enabled graphene transfer. Nat. Commun. 10, 867 (2019).

    Article  Google Scholar 

  • Zhang, T. et al. Clean transfer of 2D transition metal dichalcogenides using cellulose acetate for atomic resolution characterizations. ACS Appl. Nano Mater. 2, 5320–5328 (2019).

    Article  CAS  Google Scholar 

  • Wang, P. et al. High-fidelity transfer of chemical vapor deposition grown 2D transition metal dichalcogenides via substrate decoupling and polymer/small molecule composite. ACS Nano 14, 7370–7379 (2020).

    Article  CAS  Google Scholar 

  • Wang, Y. et al. Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature 568, 70–74 (2019).

    Article  CAS  Google Scholar 

  • Cui, X. et al. Low-temperature Ohmic contact to monolayer MoS2 by van der Waals bonded Co/h-BN electrodes. Nano Lett. 17, 4781–4786 (2017).

    Article  CAS  Google Scholar 

  • Kim, C. et al. Fermi level pinning at electrical metal contacts of monolayer molybdenum dichalcogenides. ACS Nano 11, 1588–1596 (2017).

    Article  CAS  Google Scholar 

  • English, C. D., Shine, G., Dorgan, V. E., Saraswat, K. C. & Pop, E. Improved contacts to MoS2 transistors by ultra-high vacuum metal deposition. Nano Lett. 16, 3824–3830 (2016).

    Article  CAS  Google Scholar 

  • Das, S., Chen, H.-Y., Penumatcha, A. V. & Appenzeller, J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 13, 100–105 (2013).

    Article  CAS  Google Scholar 

  • English, C. D., Smithe, K. K. H. & Pop, E. Approaching ballistic transport in monolayer MoS2 transistors with self-aligned 10 nm top gates. In Proc. 2016 IEEE International Electron Devices Meeting 131–134 (IEEE, 2016).

  • McClellan, C. J., Yalon, E., Smithe, K. K. H., Suryavanshi, S. V. & Pop, E. High current density in monolayer MoS2 doped by AlOx. ACS Nano 15, 1587–1596 (2021).

    Article  CAS  Google Scholar 

  • Smithe, K. K. H., Suryavanshi, S. V., Muñoz Rojo, M., Tedjarati, A. D. & Pop, E. Low variability in synthetic monolayer MoS2 devices. ACS Nano 11, 8456–8463 (2017).

    Article  CAS  Google Scholar 

  • Guimarães, M. H. D. et al. Atomically thin Ohmic edge contacts between two-dimensional materials. ACS Nano 10, 6392–6399 (2016).

    Article  Google Scholar 

  • Smets, Q. et al. Ultra-scaled MOCVD MoS2 MOSFETs with 42 nm contact pitch and 250 µA/µm drain current. In 2019 IEEE International Electron Devices Meeting 23.2.1–23.2.4 (IEEE, 2019).

  • Shen, P.-C. et al. Ultralow contact resistance between semimetal and monolayer semiconductors. Nature 593, 211–217 (2021).

    Article  CAS  Google Scholar 

  • Kim, B.-K. et al. Origins of genuine Ohmic van der Waals contact between indium and MoS2. npj 2D Mater. Appl. 5, 9 (2021).

    Article  CAS  Google Scholar 

  • Kinoshita, K. et al. Dry release transfer of graphene and few-layer h-BN by utilizing thermoplasticity of polypropylene carbonate. npj 2D Mater. Appl. 3, 22 (2019).

    Article  Google Scholar 

  • Frisenda, R. et al. Recent progress in the assembly of nanodevices and van der Waals heterostructures by deterministic placement of 2D materials. Chem. Soc. Rev. 47, 53–68 (2018).

    Article  CAS  Google Scholar 

  • Schranghamer, T. F., Sharma, M., Singh, R. & Das, S. Review and comparison of layer transfer methods for two-dimensional materials for emerging applications. Chem. Soc. Rev. 50, 11032–11054 (2021).

    Article  CAS  Google Scholar 

  • Wood, J. D. et al. Annealing free, clean graphene transfer using alternative polymer scaffolds. Nanotechnology 26, 055302 (2015).

    Article  CAS  Google Scholar 

  • Zhang, L. et al. Damage-free and rapid transfer of CVD-grown two-dimensional transition metal dichalcogenides by dissolving sacrificial water-soluble layers. Nanoscale 9, 19124–19130 (2017).

    Article  CAS  Google Scholar 

  • Van Ngoc, H., Qian, Y., Han, S. K. & Kang, D. J. PMMA-etching-free transfer of wafer-scale chemical vapor deposition two-dimensional atomic crystal by a water soluble polyvinyl alcohol polymer method. Sci. Rep. 6, 33096 (2016).

    Article  Google Scholar 

  • Lu, F., Karmakar, A., Shahi, S. & Einarsson, E. Selective and confined growth of transition metal dichalcogenides on transferred graphene. RSC Adv. 7, 37310–37314 (2017).

    Article  CAS  Google Scholar 

  • Yue, Y., Feng, Y., Chen, J., Zhang, D. & Feng, W. Two-dimensional large-scale bandgap-tunable monolayer MoS2(1−x)Se2x/graphene heterostructures for phototransistors. J. Mater. Chem. C 5, 5887–5896 (2017).

    Article  CAS  Google Scholar 

  • Lin, Z. et al. Controllable growth of large-size crystalline MoS2 and resist-free transfer assisted with a Cu thin film. Sci. Rep. 5, 18596 (2015).

    Article  CAS  Google Scholar 

  • Jiang, G., Feng, J., Zhang, M., Zhang, S. & Huang, H. Structure, and thermal and mechanical properties of poly(propylene carbonate) capped with different types of acid anhydride via reactive extrusion. RSC Adv. 6, 107547–107555 (2016).

    Article  CAS  Google Scholar 

  • Gao, J. et al. A promising alternative to conventional polyethylene with poly(propylene carbonate) reinforced by graphene oxide nanosheets. J. Mater. Chem. 21, 17627–17630 (2011).

    Article  CAS  Google Scholar 

  • Choi, S. H. et al. Water-assisted synthesis of molybdenum disulfide film with single organic liquid precursor. Sci. Rep. 7, 1983 (2017).

    Article  Google Scholar 

  • Chang, M.-C. et al. Fast growth of large-grain and continuous MoS2 films through a self-capping vapor-liquid-solid method. Nat. Commun. 11, 3682 (2020).

    Article  CAS  Google Scholar 

  • Chen, F., Wang, L., Wang, T. & Ji, X. Enhanced local photoluminescence of a multilayer MoS2 nanodot stacked on monolayer MoS2 flakes. Opt. Mater. Express 7, 1365–1373 (2017).

    Article  CAS  Google Scholar 

  • Xu, S. et al. Universal low-temperature Ohmic contacts for quantum transport in transition metal dichalcogenides. 2D Mater. 3, 021007 (2016).

    Article  Google Scholar 

  • Chhowalla, M., Jena, D. & Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 1, 16052 (2016).

    Article  CAS  Google Scholar 

  • Allain, A., Kang, J., Banerjee, K. & Kis, A. Electrical contacts to two-dimensional semiconductors. Nat. Mater. 14, 1195–1205 (2015).

    Article  CAS  Google Scholar 

  • Jena, D. 2D crystal semiconductors: intimate contacts. Nat. Mater. 13, 1076–1078 (2014).

    Article  CAS  Google Scholar 

  • Choi, W. et al. Low-temperature behaviors of multilayer MoS2 transistors with ohmic and Schottky contacts. Appl. Phys. Lett. 115, 033501 (2019).

    Article  Google Scholar 

  • Li, X.-X. et al. Gate-controlled reversible rectifying behaviour in tunnel contacted atomically-thin MoS2 transistor. Nat. Commun. 8, 970 (2017).

    Article  Google Scholar 

  • Knobloch, T. et al. The performance limits of hexagonal boron nitride as an insulator for scaled CMOS devices based on two-dimensional materials. Nat. Electron. 4, 98–108 (2021).

    Article  CAS  Google Scholar 

  • Chan, M. Y. et al. Suppression of thermally activated carrier transport in atomically thin MoS2 on crystalline hexagonal boron nitride substrates. Nanoscale 5, 9572–9576 (2013).

    Article  CAS  Google Scholar 

  • Li, S. et al. Nanometre-thin indium tin oxide for advanced high-performance electronics. Nat. Mater. 18, 1091–1097 (2019).

    Article  CAS  Google Scholar 

  • Daus, A. et al. High-performance flexible nanoscale transistors based on transition metal dichalcogenides. Nat. Electron. 4, 495–501 (2021).

    Article  CAS  Google Scholar 

  • Wu, S. H. et al. Performance boost of crystalline In-Ga-Zn-O material and transistor with extremely low leakage for IoT normally-off CPU application. In 2017 Symposium on VLSI Circuits T166–T167 (IEEE, 2017).

  • Lyu, R.-J., Shie, B.-S., Lin, H.-C., Li, P.-W. & Huang, T.-Y. Downscaling metal—oxide thin-film transistors to sub-50 nm in an exquisite film-profile engineering approach. IEEE Trans. Electron Devices 64, 1069–1075 (2017).

    Article  CAS  Google Scholar 

  • Wu, S. H. et al. Extremely low power c-axis aligned crystalline In-Ga-Zn-O 60 nm transistor integrated with industry 65 nm Si MOSFET for IoT normally-off CPU application. In 2016 IEEE Symposium on VLSI Technology 1–2 (IEEE, 2016).

  • Matsuda, S. et al. 30-nm-channel-length c-axis aligned crystalline In-Ga-Zn-O transistors with low off-state leakage current and steep subthreshold characteristics. In 2015 Symposium on VLSI Technology T216–T217 (IEEE, 2015).

  • Matsubayashi, D. et al. 20-nm-node trench-gate-self-aligned crystalline In-Ga-Zn-oxide FET with high frequency and low off-state current. In 2015 IEEE International Electron Devices Meeting 6.5.1–6.5.4 (IEEE, 2015).

  • Kobayashi, Y. et al. Scaling to 50-nm c-axis aligned crystalline In-Ga-Zn oxide FET with surrounded channel structure and its application for less-than-5-nsec writing speed memory. In 2014 Symposium on VLSI Technology: Digest of Technical Papers 1–2 (IEEE, 2014).

  • Lin, H.-C., Shie, B.-S. & Huang, T.-Y. 100-nm IGZO thin-film transistors with film profile engineering. IEEE Trans. Electron Devices 61, 2224–2227 (2014).

    Article  CAS  Google Scholar 

  • Lyu, R.-J. et al. Film profile engineering (FPE): a new concept for manufacturing of short-channel metal oxide TFTs. In 2013 IEEE International Electron Devices Meeting 11.2.1–11.2.4 (IEEE, 2013).

  • Xiong, X. et al. High performance black phosphorus electronic and photonic devices with HfLaO dielectric. IEEE Electron Device Lett. 39, 127–130 (2018).

    Article  CAS  Google Scholar 

  • Si, M., Yang, L., Du, Y. & Ye, P. D. Black phosphorus field-effect transistor with record drain current exceeding 1 A/mm. In 2017 75th Annual Device Research Conference 1–2 (IEEE, 2017).

  • Yang, L. et al. How important is the metal–semiconductor contact for Schottky barrier transistors: a case study on few-layer black phosphorus? ACS Omega 2, 4173–4179 (2017).

    Article  CAS  Google Scholar 

  • Li, T. et al. High field transport of high performance black phosphorus transistors. Appl. Phys. Lett. 110, 163507 (2017).

    Article  Google Scholar 

  • Li, K.-S. et al. MoS2 U-shape MOSFET with 10 nm channel length and poly-Si source/drain serving as seed for full wafer CVD MoS2 availability. In 2016 IEEE Symposium on VLSI Technology 1–2 (IEEE, 2016).

  • Liu, Y. et al. Pushing the performance limit of sub-100 nm molybdenum disulfide transistors. Nano Lett. 16, 6337–6342 (2016).

    Article  CAS  Google Scholar 

  • Nourbakhsh, A. et al. 15-nm channel length MoS2 FETs with single- and double-gate structures. In 2015 Symposium on VLSI Technology T28–T29 (IEEE, 2015).

  • Yang, L., Lee, R. T. P., Rao, S. S. P., Tsai, W. & Ye, P. D. 10 nm nominal channel length MoS2 FETs with EOT 2.5 nm and 0.52 mA/µm drain current. In 2015 73rd Annual Device Research Conference 237–238 (IEEE, 2015).

  • Yang, L. et al. High-performance MoS2 field-effect transistors enabled by chloride doping: record low contact resistance (0.5 kΩ·µm) and record high drain current (460 µA/µm). In 2014 Symposium on VLSI Technology: Digest of Technical Papers 1–2 (IEEE, 2014).

  • Li, W. et al. High-performance CVD MoS2 transistors with self-aligned top-gate and Bi contact. In 2021 IEEE International Electron Devices Meeting 37.3.1–37.3.4 (IEEE, 2021).

  • Kang, K. et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520, 656–660 (2015).

    Article  CAS  Google Scholar 

  • Chee, S.-S. et al. Lowering the Schottky barrier height by graphene/Ag electrodes for high-mobility MoS2 field-effect transistors. Adv. Mater. 31, 1804422 (2019).

    Article  Google Scholar 

  • Smithe, K. K. H., English, C. D., Suryavanshi, S. V. & Pop, E. Intrinsic electrical transport and performance projections of synthetic monolayer MoS2 devices. 2D Mater. 4, 011009 (2016).

    Article  Google Scholar 

  • Time Stamp:

    More from Nature Nanotechnology