Coulomb-mediated antibunching of an electron pair surfing on sound

Coulomb-mediated antibunching of an electron pair surfing on sound

Source Node: 2644732
  • DiVincenzo, D. The physical implementation of quantum computation. Fortschr. Phys. 48, 771–783 (2000).

    <a data-track="click" rel="nofollow noopener" data-track-label="10.1002/1521-3978(200009)48:9/113.0.CO;2-E” data-track-action=”article reference” href=”https://doi.org/10.1002%2F1521-3978%28200009%2948%3A9%2F11%3C771%3A%3AAID-PROP771%3E3.0.CO%3B2-E” aria-label=”Article reference 1″ data-doi=”10.1002/1521-3978(200009)48:9/113.0.CO;2-E”>Article  Google Scholar 

  • Ladd, T. et al. Quantum computers. Nature 464, 45–53 (2010).

    Article  CAS  Google Scholar 

  • Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).

    Article  CAS  Google Scholar 

  • Wright, K. et al. Benchmarking an 11-qubit quantum computer. Nat. Commun. 10, 5464 (2019).

    Article  CAS  Google Scholar 

  • Zwanenburg, F. et al. Silicon quantum electronics. Rev. Mod. Phys. 85, 961–1019 (2013).

    Article  CAS  Google Scholar 

  • Hill, C. et al. A surface code quantum computer in silicon. Sci. Adv. https://doi.org/10.1126/sciadv.1500707 (2015).

  • Vandersypen, L. et al. Interfacing spin qubits in quantum dots and donors–hot, dense, and coherent. npj Quantum Inf. https://doi.org/10.1038/s41534-017-0038-y (2017).

  • O’Brien, J., Furusawa, A. & Vučković, J. Photonic quantum technologies. Nat. Photonics 3, 687–695 (2009).

    Article  Google Scholar 

  • Barnes, C., Shilton, J. & Robinson, A. Quantum computation using electrons trapped by surface acoustic waves. Phys. Rev. B 62, 8410–8419 (2000).

    Article  CAS  Google Scholar 

  • Ionicioiu, R., Amaratunga, G. & Udrea, F. Quantum computation with ballistic electrons. Int. J. Mod. Phys. B 15, 125–133 (2001).

    Article  Google Scholar 

  • Bäuerle, C. et al. Coherent control of single electrons: a review of current progress. Rep. Prog. Phys. 81, 056503 (2018).

    Article  Google Scholar 

  • Edlbauer, H. et al. Semiconductor-based electron flying qubits: review on recent progress accelerated by numerical modelling. EPJ Quantum Technol. https://doi.org/10.1140/epjqt/s40507-022-00139-w (2022).

  • Dubois, J. et al. Minimal-excitation states for electron quantum optics using levitons. Nature 502, 659–663 (2013).

    Article  CAS  Google Scholar 

  • Bocquillon, E. et al. Coherence and indistinguishability of single electrons emitted by independent sources. Science 339, 1054–1057 (2013).

    Article  CAS  Google Scholar 

  • Jullien, T. et al. Quantum tomography of an electron. Nature 514, 603–607 (2014).

    Article  CAS  Google Scholar 

  • Hong, C., Ou, Z. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987).

    Article  CAS  Google Scholar 

  • Liu, R., Odom, B., Yamamoto, Y. & Tarucha, S. Quantum interference in electron collision. Nature 391, 263–265 (1998).

    Article  CAS  Google Scholar 

  • Kang, K. Electronic Mach–Zehnder quantum eraser. Phys. Rev. B 75, 125326 (2007).

    Article  Google Scholar 

  • Vyshnevyy, A., Lebedev, A., Lesovik, G. & Blatter, G. Two-particle entanglement in capacitively coupled Mach–Zehnder interferometers. Phys. Rev. B 87, 165302 (2013).

    Article  Google Scholar 

  • Weisz, E. et al. An electronic quantum eraser. Science 344, 1363–1366 (2014).

    Article  CAS  Google Scholar 

  • Lepage, H., Lasek, A., Arvidsson-Shukur, D. & Barnes, C. Entanglement generation via power-of-swap operations between dynamic electron-spin qubits. Phys. Rev. A 101, 022329 (2020).

    Article  CAS  Google Scholar 

  • Jadot, B. et al. Distant spin entanglement via fast and coherent electron shuttling. Nat. Nanotechnol. 16, 570–575 (2021).

    Article  CAS  Google Scholar 

  • Choquer, M. et al. Quantum control of optically active artificial atoms with surface acoustic waves. IEEE Trans. Quantum Eng. https://doi.org/10.1109/TQE.2022.3204928 (2022).

  • Aspect, A., Dalibard, J. & Roger, G. Experimental test of Bell’s inequalities using time-varying analyzers. Phys. Rev. Lett. 49, 1804–1807 (1982).

    Article  Google Scholar 

  • Bell, J. On the Einstein Podolsky Rosen paradox. Phys. Phys. Fiz. 1, 195–200 (1964).

    Google Scholar 

  • Hermelin, S. et al. Electrons surfing on a sound wave as a platform for quantum optics with flying electrons. Nature 477, 435–438 (2011).

    Article  CAS  Google Scholar 

  • McNeil, R. et al. On-demand single-electron transfer between distant quantum dots. Nature 477, 439–442 (2011).

    Article  CAS  Google Scholar 

  • Delsing, P. et al. The 2019 surface acoustic waves roadmap. J. Phys. D 52, 353001 (2019).

    Article  CAS  Google Scholar 

  • Takada, S. et al. Sound-driven single-electron transfer in a circuit of coupled quantum rails. Nat. Commun. https://doi.org/10.1038/s41467-019-12514-w (2019).

  • Edlbauer, H. et al. In-flight distribution of an electron within a surface acoustic wave. Appl. Phys. Lett. 119, 114004 (2021).

    Article  CAS  Google Scholar 

  • Ito, R. et al. Coherent beam splitting of flying electrons driven by a surface acoustic wave. Phys. Rev. Lett. 126, 070501 (2021).

    Article  CAS  Google Scholar 

  • Chatzikyriakou, E. et al. Unveiling the charge distribution of a GaAs-based nanoelectronic device: a large experimental data-set approach. Phys. Rev. Research 4, 043163 (2022).

    Article  CAS  Google Scholar 

  • Helgers, P. et al. Flying electron spin control gates. Nat. Commun. https://doi.org/10.1038/s41467-022-32807-x (2022).

  • Wang, J. et al. Generation of a single-cycle acoustic pulse: a scalable solution for transport in single-electron circuits. Phys. Rev. X 12, 031035 (2022).

    CAS  Google Scholar 

  • Fletcher, J. et al. Time-resolved Coulomb collision of single electrons. Preprint at arXiv https://doi.org/10.48550/arXiv.2210.03473 (2022).

  • Ubbelohde, N. et al. Two electrons interacting at a mesoscopic beam splitter. Preprint at arXiv https://doi.org/10.48550/arXiv.2210.03632 (2022).

  • Birner, S. et al. nextnano: general purpose 3-D simulations. IEEE Trans. Electron Devices 54, 2137–2142 (2007).

    Article  CAS  Google Scholar 

  • Hou, H. et al. Experimental verification of electrostatic boundary conditions in gate-patterned quantum devices. J. Phys. D 51, 244004 (2018).

    Article  Google Scholar 

  • Sze, S. & Ng, K. Physics of Semiconductor Devices, 4 (John Wiley, 2006).

  • Time Stamp:

    More from Nature Nanotechnology