Staggered-layer-boosted flexible Bi2Te3 films with high thermoelectric performance - Nature Nanotechnology

Staggered-layer-boosted flexible Bi2Te3 films with high thermoelectric performance – Nature Nanotechnology

Source Node: 2799877
  • Zhu, T. et al. Compromise and synergy in high-efficiency thermoelectric materials. Adv. Mater. 29, 1605884 (2017).

    Article  Google Scholar 

  • Zhao, W. et al. Magnetoelectric interaction and transport behaviours in magnetic nanocomposite thermoelectric materials. Nat. Nanotechnol. 12, 55–60 (2017).

    Article  CAS  Google Scholar 

  • He, J. & Tritt, T. M. Advances in thermoelectric materials research: looking back and moving forward. Science 357, eaak9997 (2017).

    Article  Google Scholar 

  • Jiang, B. et al. High-entropy-stabilized chalcogenides with high thermoelectric performance. Science 371, 830–834 (2021).

    Article  CAS  Google Scholar 

  • Poudel, B. et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634–638 (2008).

    Article  CAS  Google Scholar 

  • Hu, L. P., Zhu, T. J., Liu, X. H. & Zhao, X. B. Point defect engineering of high-performance bismuth-telluride-based thermoelectric materials. Adv. Funct. Mater. 24, 5211–5218 (2014).

    Article  CAS  Google Scholar 

  • Lu, Y. et al. Ultrahigh performance PEDOT/Ag2Se/CuAgSe composite film for wearable thermoelectric power generators. Mater. Today Phys. 14, 100223 (2020).

    Article  Google Scholar 

  • Yoo, B. et al. Electrodeposition of thermoelectric superlattice nanowires. Adv. Mater. 19, 296–299 (2007).

    Article  CAS  Google Scholar 

  • Bae, E. J., Kang, Y. H., Jang, K. S., Lee, C. & Cho, S. Y. Solution synthesis of telluride-based nano-barbell structures coated with PEDOT:PSS for spray-printed thermoelectric generators. Nanoscale 8, 10885–10890 (2016).

    Article  CAS  Google Scholar 

  • An, H., Pusko, M., Chun, D., Park, S. & Moon, J. In situ synthesis of flexible hybrid composite films for improved thermoelectric performance. Chem. Eng. J. 357, 547–558 (2019).

    Article  CAS  Google Scholar 

  • Wang, L. et al. Exceptional thermoelectric properties of flexible organic–inorganic hybrids with monodispersed and periodic nanophase. Nat. Commun. 9, 3817 (2018).

    Article  Google Scholar 

  • Jin, Q. et al. Flexible layer-structured Bi2Te3 thermoelectric on a carbon nanotube scaffold. Nat. Mater. 18, 62–68 (2018).

    Article  Google Scholar 

  • Fu, L. et al. High-performance bismuth antimony telluride thermoelectric membrane on curved and flexible supports. ACS Energy Lett. 6, 2378–2385 (2021).

    Article  CAS  Google Scholar 

  • Mu, X. et al. Enhanced electrical properties of stoichiometric Bi0.5Sb1.5Te3 film with high-crystallinity via layer-by-layer in-situ growth. Nano Energy 33, 55–64 (2017).

    Article  CAS  Google Scholar 

  • Lima, M. S. L. et al. High power factor in epitaxial Mg2Sn thin films via Ga doping. Appl. Phys. Lett. 119, 254101 (2021).

    Article  CAS  Google Scholar 

  • Kong, D., Zhu, W., Guo, Z. P. & Deng, Y. High-performance flexible Bi2Te3 films based wearable thermoelectric generator for energy harvesting. Energy 175, 292–299 (2019).

    Article  CAS  Google Scholar 

  • Shang, H. et al. High-performance Ag-modified Bi0.5Sb1.5Te3 films for the flexible thermoelectric generator. ACS Appl. Mater. Interfaces 12, 7358–7365 (2020).

    Article  CAS  Google Scholar 

  • Zheng, Z. H. et al. Harvesting waste heat with flexible Bi2Te3 thermoelectric thin film. Nat. Sustain. 6, 180–191 (2023).

    Article  Google Scholar 

  • Liu, W. S., Jie, Q., Kim, H. S. & Ren, Z. F. Current progress and future challenges in thermoelectric power generation: from materials to devices. Acta Mater. 87, 357–376 (2015).

    Article  CAS  Google Scholar 

  • Hendricks, T., Caillat, T. & Mori, T. Keynote review of latest advances in thermoelectric generation materials, devices, and technologies 2022. Energies 15, 7307 (2022).

    Article  CAS  Google Scholar 

  • Wang, Y. et al. Flexible thermoelectric materials and generators: challenges and innovations. Adv. Mater. 31, 1807916 (2019).

    Article  Google Scholar 

  • Tan, M., Liu, W. D., Shi, X. L., Sun, Q., & Chen, Z. G. Minimization of the electrical contact resistance in thin-film thermoelectric device. Appl. Phys. Rev. 10, 021404 (2023).

    Article  CAS  Google Scholar 

  • Li, X., Cai, K. F., Gao, M. Y., Du, Y. & Shen, S. Recent advances in flexible thermoelectric films and devices. Nano Energy 89, 106309 (2021).

    Article  CAS  Google Scholar 

  • Zhang, Z. et al. Conjugated polymers for flexible energy harvesting and storage. Adv. Mater. 30, e1704261 (2018).

    Article  Google Scholar 

  • Wan, C. et al. Ultrahigh thermoelectric power factor in flexible hybrid inorganic–organic superlattice. Nat. Commun. 8, 1024 (2017).

    Article  Google Scholar 

  • Lu, Y. et al. Ultrahigh power factor and flexible silver selenide-based composite film for thermoelectric devices. Energy Environ. Sci. 13, 1240–1249 (2020).

    Article  CAS  Google Scholar 

  • Jiang, C. et al. Ultrahigh performance polyvinylpyrrolidone/Ag2Se composite thermoelectric film for flexible energy harvesting. Nano Energy 80, 105488 (2021).

    Article  CAS  Google Scholar 

  • Ding, Y. et al. High performance n-type Ag2Se film on nylon membrane for flexible thermoelectric power generator. Nat. Commun. 10, 841 (2019).

    Article  Google Scholar 

  • An, C. J., Kang, Y. H., Song, H., Jeong, Y. & Cho, S. Y. High-performance flexible thermoelectric generator by control of electronic structure of directly spun carbon nanotube webs with various molecular dopants. J. Mater. Chem. A 5, 15631–15639 (2017).

    Article  CAS  Google Scholar 

  • Lu, Y. et al. Enhanced-performance PEDOT:PSS/Cu2Se-based composite films for wearable thermoelectric power generators. ACS Appl. Mater. Interfaces 13, 631–638 (2021).

    Article  CAS  Google Scholar 

  • Tian, R. et al. A solution-processed TiS2/organic hybrid superlattice film towards flexible thermoelectric devices. J. Mater. Chem. A 5, 564–570 (2017).

    Article  CAS  Google Scholar 

  • Xu, Q. et al. Conformal organic–inorganic semiconductor composites for flexible thermoelectrics. Energy Environ. Sci. 13, 511–518 (2020).

    Article  CAS  Google Scholar 

  • Liang, J. et al. Flexible thermoelectrics: from silver chalcogenides to full-inorganic devices. Energy Environ. Sci. 12, 2983–2990 (2019).

    Article  CAS  Google Scholar 

  • Xu, S. et al. Computation-guided design of high-performance flexible thermoelectric modules for sunlight-to-electricity conversion. Energy Environ. Sci. 13, 3480–3488 (2020).

    Article  CAS  Google Scholar 

  • Jurado, J. P. et al. Solar harvesting: a unique opportunity for organic thermoelectrics? Adv. Energy Mater. 9, 1902385 (2019).

    Article  CAS  Google Scholar 

  • Sun, T. et al. Stretchable fabric generates electric power from woven thermoelectric fibers. Nat. Commun. 11, 572 (2020).

    Article  CAS  Google Scholar 

  • Peng, J. & Snyder, G. J. A figure of merit for flexibility. Science 366, 690–691 (2019).

    Article  CAS  Google Scholar 

  • Ni, D. et al. Free-standing highly conducting PEDOT films for flexible thermoelectric generator. Energy 170, 53–61 (2019).

    Article  CAS  Google Scholar 

  • Saeidi-Javash, M., Kuang, W. Z., Dun, C. C. & Zhang, Y. L. 3D conformal printing and photonic sintering of high-performance flexible thermoelectric films using 2D nanoplates. Adv. Funct. Mater. 29, 1901930 (2019).

    Article  Google Scholar 

  • Sun, S. et al. Direct atomic-scale observation of ultrasmall Ag nanowires that exhibit fcc, bcc, and hcp structures under bending. Phys. Rev. Lett. 128, 015701 (2022).

    Article  CAS  Google Scholar 

  • Thonhauser, T., Jeon, G. S., Mahan, G. D. & Sofo, J. O. Stress-induced defects in Sb2Te3. Phys. Rev. B 68, 205207 (2003).

  • Fu, X. et al. Improving deformability of Sb2Te3 layered material by dislocation climb at anti-phase boundary. Scr. Mater. 135, 10–14 (2017).

    Article  CAS  Google Scholar 

  • Zhu, B. et al. Realizing record high performance in n-type Bi2Te3-based thermoelectric materials. Energy Environ. Sci. 13, 2106–2114 (2020).

    Article  CAS  Google Scholar 

  • Carle, M., Pierrat, P., Lahalle-Gravier, C., Scherrer, S. & Scherrer, H. Transport properties of n-type Bi2(Te1-xSex)3 single crystal solid solutions (x ≤ 0.05). J. Phys. Chem. Solids 56, 201–209 (1994).

    Article  Google Scholar 

  • Shin, S. et al. High-performance screen-printed thermoelectric films on fabrics. Sci. Rep. 7, 7317 (2017).

    Article  Google Scholar 

  • Zou, H., Rowe, D. M. & Williams, S. G. K. Peltier effect in a co-evaporated Sb2Te3(P)–Bi2Te3(N) thin film thermocouple. Thin Solid Films 408, 270–274 (2002).

    Article  CAS  Google Scholar 

  • Zhang, Z. W., Wang, Y., Deng, Y. & Xu, Y. B. The effect of (00l) crystal plane orientation on the thermoelectric properties of Bi2Te3 thin film. Solid State Commun. 151, 1520–1523 (2011).

    Article  CAS  Google Scholar 

  • Fan, P. et al. High thermoelectric performance achieved in Bi0.4Sb1.6Te3 films with high (00l) orientation via magnetron sputtering. J. Eur. Ceram. Soc. 40, 4016–4021 (2020).

    Article  CAS  Google Scholar 

  • Hou, W. et al. Fabrication and excellent performances of Bi0.5Sb1.5Te3/epoxy flexible thermoelectric cooling devices. Nano Energy 50, 766–776 (2018).

    Article  CAS  Google Scholar 

  • Jiang, Y. et al. Direct atom-by-atom chemical identification of nanostructures and defects of topological insulators. Nano Lett. 13, 2851–2856 (2013).

    Article  CAS  Google Scholar 

  • Navrátil, J., Starý, Z. & Plechác̆ek, T. Thermoelectric properties of p-type antimony bismuth telluride alloys prepared by cold pressing. Mater. Res. Bull. 31, 1559–1566 (1996).

    Article  Google Scholar 

  • Takashiri, M., Takiishi, M., Tanaka, S., Miyazaki, K. & Tsukamoto, H. Thermoelectric properties of n-type nanocrystalline bismuth-telluride-based thin films deposited by flash evaporation. J. Appl. Phys. 101, 074301 (2007).

    Article  Google Scholar 

  • Xing, Y. et al. A device-to-material strategy guiding the ‘double-high’ thermoelectric module. Joule 4, 2475–2483 (2020).

    Article  CAS  Google Scholar 

  • Miquelot, A. et al. In- and out-plane transport properties of chemical vapor deposited TiO2 anatase films. J. Mater. Sci. 56, 10458–10476 (2021).

    Article  CAS  Google Scholar 

  • Bahrami, A., Schierning, G. & Nielsch, K. Waste recycling in thermoelectric materials. Adv. Energy Mater 10, 1904159 (2020).

    Article  CAS  Google Scholar 

  • Shafique, K., Khawaja, B., Sabir, F., Qazi, S. & Mustaqim, M. Internet of things (IoT) for next-generation smart systems: a review of current challenges, future trends and prospects for emerging 5G-IoT scenarios. IEEE Access 8, 23022–23040 (2020).

    Article  Google Scholar 

  • Varghese, T. et al. Flexible thermoelectric devices of ultrahigh power factor by scalable printing and interface engineering. Adv. Funct. Mater. 30, 1905796 (2020).

    Article  CAS  Google Scholar 

  • Lu, Z. et al. Shear induced deformation twinning evolution in thermoelectric InSb. npj Comput. Mater. 7, 111 (2021).

    Article  CAS  Google Scholar 

  • Lee, H. Thermoelectrics: Design and Materials (John Wiley & Sons, 2016).

  • Hu, S. et al. Band diagrams and performance of CdTe solar cells with a Sb2Te3 back contact buffer layer. AIP Adv. 1, 042152 (2011).

    Article  Google Scholar 

  • Salmon, J., Harmany, Z., Deledalle, C. A. & Willett, R. Poisson noise reduction with non-local PCA. J. Math. Imaging Vis. 48, 279–294 (2014).

    Article  Google Scholar 

  • Barthel, J. Dr. Probe: a software for high-resolution STEM image simulation. Ultramicroscopy 193, 1–11 (2018).

    Article  CAS  Google Scholar 

  • Zhang, Q., Zhang, L. Y., Jin, C. H., Wang, Y. M. & Lin, F. CalAtom: a software for quantitatively analysing atomic columns in a transmission electron microscope image. Ultramicroscopy 202, 114–120 (2019).

    Article  CAS  Google Scholar 

  • Shamay, Y. et al. Quantitative self-assembly prediction yields targeted nanomedicines. Nat. Mater. 17, 361–368 (2018).

    Article  CAS  Google Scholar 

  • Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964).

    Article  Google Scholar 

  • Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965).

    Article  Google Scholar 

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  • Zhou, Y. et al. Physics-guided co-designing flexible thermoelectrics with techno-economic sustainability for low-grade heat harvesting. Sci. Adv. 9, eadf5701 (2023).

    Article  Google Scholar 

  • Time Stamp:

    More from Nature Nanotechnology