Light management for perovskite light-emitting diodes - Nature Nanotechnology

Light management for perovskite light-emitting diodes – Nature Nanotechnology

Source Node: 2858166
  • Tan, Z.-K. et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 9, 687–692 (2014).

    Article  CAS  Google Scholar 

  • Cho, H. et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 350, 1222–1225 (2015).

    Article  CAS  Google Scholar 

  • Zhao, B. et al. High-efficiency perovskite–polymer bulk heterostructure light-emitting diodes. Nat. Photon. 12, 783–789 (2018).

    Article  CAS  Google Scholar 

  • Chiba, T. et al. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nat. Photon. 12, 681–687 (2018).

    Article  CAS  Google Scholar 

  • Lin, K. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 562, 245–248 (2018).

    Article  CAS  Google Scholar 

  • Cao, Y. et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 562, 249–253 (2018).

    Article  CAS  Google Scholar 

  • Xu, W. et al. Rational molecular passivation for high-performance perovskite light-emitting diodes. Nat. Photon. 13, 418–424 (2019).

    Article  CAS  Google Scholar 

  • Guo, B. et al. Ultrastable near-infrared perovskite light-emitting diodes. Nat. Photon. 16, 637–643 (2022).

    Article  CAS  Google Scholar 

  • Kim, J. S. et al. Ultra-bright, efficient and stable perovskite light-emitting diodes. Nature 611, 688–694 (2022). (2022).

    Article  CAS  Google Scholar 

  • Han, T. H. et al. A roadmap for the commercialization of perovskite light emitters. Nat. Rev. Mater. 7, 757–777 (2022).

    Article  Google Scholar 

  • Liu, S. et al. Manipulating efficient light emission in two-dimensional perovskite crystals by pressure-induced anisotropic deformation. Sci. Adv. 5, eaav9445 (2019).

    Article  CAS  Google Scholar 

  • Cho, C. et al. The role of photon recycling in perovskite light-emitting diodes. Nat. Commun. 11, 611 (2020).

    Article  CAS  Google Scholar 

  • Stranks, S. D. et al. The physics of light emission in halide perovskite devices. Adv. Mater. 31, 1803336 (2019).

    Article  CAS  Google Scholar 

  • Zhao, X. & Tan, Z. K. Large-area near-infrared perovskite light-emitting diodes. Nat. Photon. 14, 215–218 (2019).

    Article  Google Scholar 

  • Xiao, Z. et al. Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites. Nat. Photon. 11, 108–115 (2017).

    Article  CAS  Google Scholar 

  • Zhao, B. et al. Efficient light-emitting diodes from mixed-dimensional perovskites on a fluoride interface. Nat. Electron. 3, 704–710 (2020).

    Article  CAS  Google Scholar 

  • Wang, N. et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat. Photon. 10, 699–704 (2016).

    Article  CAS  Google Scholar 

  • Yuan, M. et al. Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotechnol. 11, 872–877 (2016).

    Article  CAS  Google Scholar 

  • Jiang, Y. et al. Reducing the impact of Auger recombination in quasi-2D perovskite light-emitting diodes. Nat. Commun. 12, 336 (2021).

    Article  CAS  Google Scholar 

  • Hutter, E. M. et al. Direct–indirect character of the bandgap in methylammonium lead iodide perovskite. Nat. Mater. 16, 115–120 (2016).

    Article  Google Scholar 

  • Li, P. et al. Multiple-quantum-well perovskite for hole-transport-layer-free light-emitting diodes. Chin. Chem. Lett. 33, 1017–1020 (2022).

    Article  CAS  Google Scholar 

  • Jiang, Y. et al. Synthesis-on-substrate of quantum dot solids. Nature 612, 679–684 (2022).

    Article  CAS  Google Scholar 

  • Ban, M. et al. Solution-processed perovskite light emitting diodes with efficiency exceeding 15% through additive-controlled nanostructure tailoring. Nat. Commun. 9, 3892 (2018).

    Article  Google Scholar 

  • Zou, W. et al. Minimising efficiency roll-off in high-brightness perovskite light-emitting diodes. Nat. Commun. 9, 608 (2018).

    Article  Google Scholar 

  • Zhang, Q. et al. Light out-coupling management in perovskite LEDs—what can we learn from the past? Adv. Funct. Mater. 30, 2002570 (2020).

    Article  CAS  Google Scholar 

  • Shen, Y. et al. High-efficiency perovskite light-emitting diodes with synergetic outcoupling enhancement. Adv. Mater. 31, 1901517 (2019).

    Article  Google Scholar 

  • Zhao, L., Lee, K. M., Roh, K., Khan, S. U. Z. & Rand, B. P. Improved outcoupling efficiency and stability of perovskite light-emitting diodes using thin emitting layers. Adv. Mater. 31, 1805836 (2019).

    Article  Google Scholar 

  • Richter, J. M. et al. Enhancing photoluminescence yields in lead halide perovskites by photon recycling and light out-coupling. Nat. Commun. 7, 13941 (2016).

    Article  CAS  Google Scholar 

  • He, S. et al. Tailoring the refractive index and surface defects of CsPbBr3 quantum dots via alkyl cation-engineering for efficient perovskite light-emitting diodes. Chem. Eng. J. 425, 130678 (2021).

    Article  CAS  Google Scholar 

  • Shi, X. B. et al. Optical energy losses in organic–inorganic hybrid perovskite light-emitting diodes. Adv. Opt. Mater. 6, 1800667 (2018).

    Article  Google Scholar 

  • Wan, Q. et al. Ultrathin light-emitting diodes with external efficiency over 26% based on resurfaced perovskite nanocrystals. ACS Energy Lett. 13, 927–934 (2023).

    Article  Google Scholar 

  • Zou, C. & Lin, L. Y. Effect of emitter orientation on the outcoupling efficiency of perovskite light-emitting diodes. Opt. Lett. 45, 4786–4789 (2020).

    Article  Google Scholar 

  • Werner, J. et al. Complex refractive indices of cesium-formamidinium-based mixed-halide perovskites with optical band gaps from 1.5 to 1.8 eV. ACS Energy Lett. 3, 742–747 (2018).

    Article  CAS  Google Scholar 

  • Liu, Z. et al. Perovskite light-emitting diodes with EQE exceeding 28% through a synergetic dual-additive strategy for defect passivation and nanostructure regulation. Adv. Mater. 33, 2103268 (2021).

    Article  CAS  Google Scholar 

  • Bowman, A. R., Anaya, M., Greenham, N. C. & Stranks, S. D. Quantifying photon recycling in solar cells and light-emitting diodes: absorption and emission are always key. Phys. Rev. Lett. 125, 067401 (2020).

    Article  CAS  Google Scholar 

  • Chen, J., Ma, P., Chen, W. & Xiao, Z. Overcoming outcoupling limit in perovskite light-emitting diodes with enhanced photon recycling. Nano Lett. 21, 8426–8432 (2021).

    Article  CAS  Google Scholar 

  • Fieramosca, A. et al. Tunable Out-of-plane excitons in 2D single-crystal perovskites. ACS Photon. 5, 4179–4185 (2018).

    Article  CAS  Google Scholar 

  • Walters, G. et al. Directional light emission from layered metal halide perovskite crystals. J. Phys. Chem. Lett. 11, 3458–3465 (2020).

    Article  CAS  Google Scholar 

  • Jurow, M. J. et al. Tunable anisotropic photon emission from self-organized CsPbBr3 perovskite nanocrystals. Nano Lett. 17, 4534–4540 (2017).

    Article  CAS  Google Scholar 

  • Jurow, M. J. et al. Manipulating the transition dipole moment of CsPbBr3 perovskite nanocrystals for superior optical properties. Nano Lett. 19, 2489–2496 (2019).

    Article  CAS  Google Scholar 

  • Cui, J. et al. Efficient light-emitting diodes based on oriented perovskite nanoplatelets. Sci. Adv. 7, eabg8458 (2021).

    Article  CAS  Google Scholar 

  • Morgenstern, T. et al. Elucidating the performance limits of perovskite nanocrystal light emitting diodes. J. Lumin. 220, 116939 (2020).

    Article  CAS  Google Scholar 

  • Proppe, A. H. et al. Transition dipole moments of n = 1, 2, and 3 perovskite quantum wells from the optical stark effect and many-body perturbation theory. J. Phys. Chem. Lett. 11, 716–723 (2020).

    Article  CAS  Google Scholar 

  • Cho, C. & Greenham, N. C. Computational study of dipole radiation in re-absorbing perovskite semiconductors for optoelectronics. Adv. Sci. 8, 2003559 (2021).

    Article  CAS  Google Scholar 

  • Liu, Y. et al. Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures. Nat. Photon. 13, 760–764 (2019).

    Article  CAS  Google Scholar 

  • Ziebarth, J. M., Saafir, A. K., Fan, S. & McGehee, M. D. Extracting light from polymer light-emitting diodes using stamped bragg gratings. Adv. Funct. Mater. 14, 451–456 (2004).

    Article  CAS  Google Scholar 

  • Sun, Y. & Forrest, S. R. Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids. Nat. Photon. 2, 483–487 (2008).

    Article  CAS  Google Scholar 

  • Zhang, Q. et al. Efficient metal halide perovskite light-emitting diodes with significantly improved light extraction on nanophotonic substrates. Nat. Commun. 10, 727 (2019).

    Article  Google Scholar 

  • Jeon, S. et al. Perovskite light-emitting diodes with improved outcoupling using a high-index contrast nanoarray. Small 15, 1900135 (2019).

    Article  Google Scholar 

  • Shen, Y. et al. Interfacial nucleation seeding for electroluminescent manipulation in blue perovskite light-emitting diodes. Adv. Funct. Mater. 31, 2103870 (2021).

    Article  CAS  Google Scholar 

  • Mehta, D. S., Saxena, K., Rai, V. K., Srivastava, R. & Kamalasanan, M. N. Enhancement of light out-coupling efficiency of organic light-emitting devices by anti-reflection coating technique. In 2007 International Workshop on Physics of Semiconductor Devices 628–629 (IEEE, 2007).

  • Meng, S. S., Li, Y. Q. & Tang, J. X. Theoretical perspective to light outcoupling and management in perovskite light-emitting diodes. Org. Electron. 61, 351–358 (2018).

    Article  CAS  Google Scholar 

  • Kim, H. P. et al. High-efficiency, blue, green, and near-infrared light-emitting diodes based on triple cation perovskite. Adv. Opt. Mater. 5, 1600920 (2017).

    Article  Google Scholar 

  • Fakharuddin, A. et al. Reduced efficiency roll-off and improved stability of mixed 2D/3D perovskite light emitting diodes by balancing charge injection. Adv. Funct. Mater. 29, 1904101 (2019).

    Article  Google Scholar 

  • Weidlich, A. & Wilkie, A. Anomalous dispersion in predictive rendering. Comput. Graph. Forum 28, 1065–1072 (2009).

    Article  Google Scholar 

  • Usha, K. S., Sivakumar, R. & Sanjeeviraja, C. Optical constants and dispersion energy parameters of NiO thin films prepared by radio frequency magnetron sputtering technique. J. Appl. Phys. 114, 123501 (2013).

    Article  Google Scholar 

  • Fang, C. Y. et al. Nanoparticle stacks with graded refractive indices enhance the omnidirectional light harvesting of solar cells and the light extraction of light-emitting diodes. Adv. Funct. Mater. 23, 1412–1421 (2013).

    Article  CAS  Google Scholar 

  • Schubert, E. F. et al. Highly efficient light-emitting diodes with microcavities. Science 265, 943–945 (1994).

    Article  CAS  Google Scholar 

  • Purcell, E. M. in Confined Electrons and Photons (eds Burstein, E. & Weisbuch, C.) 839–839 (Springer, 1995).

  • Lüssem, B., Leo, K., Thomschke, M. & Hofmann, S. Top-emitting organic light-emitting diodes. Opt. Express 19, A1250–A1264 (2011).

    Article  Google Scholar 

  • Miao, Y. et al. Microcavity top-emission perovskite light-emitting diodes. Light Sci. Appl. 9, 89 (2020).

    Article  CAS  Google Scholar 

  • Gu, L., Wen, K., Peng, Q., Huang, W. & Wang, J. Surface-plasmon-enhanced perovskite light-emitting diodes. Small 16, 2001861 (2020).

    Article  CAS  Google Scholar 

  • Barnes, W. L., Dereux, A. & Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 424, 824–830 (2003).

    Article  CAS  Google Scholar 

  • Xu, L. et al. Surface plasmon enhanced luminescence from organic-inorganic hybrid perovskites. Appl. Phys. Lett. 110, 233113 (2017).

    Article  Google Scholar 

  • Cai, C. et al. Photoluminescence enhancement in wide spectral range excitation in CsPbBr3 nanocrystal/Ag nanostructure via surface plasmon coupling. Opt. Lett. 44, 658–661 (2019).

    Article  CAS  Google Scholar 

  • Li, D. et al. Plasmonic photonic crystals induced two-order fluorescence enhancement of blue perovskite nanocrystals and its application for high-performance flexible ultraviolet photodetectors. Adv. Funct. Mater. 28, 1804429 (2018).

    Article  Google Scholar 

  • Zhang, K. et al. Silver nanoparticles enhanced luminescence and stability of CsPbBr3 perovskite quantum dots in borosilicate glass. J. Am. Ceram. Soc. 103, 2463–2470 (2020).

    Article  CAS  Google Scholar 

  • Bayles, A. et al. Localized surface plasmon effects on the photophysics of perovskite thin films embedding metal nanoparticles. J. Mater. Chem. C 8, 916–921 (2020).

    Article  CAS  Google Scholar 

  • Zhang, X. et al. Plasmonic perovskite light-emitting diodes based on the Ag-CsPbBr3 system. ACS Appl. Mater. Interf. 9, 4926–4931 (2017).

    Article  CAS  Google Scholar 

  • Cai, C., Bi, G., Wu, H. & Zhai, J. Electron energy transfer effect in Au NS/CH3NH3PbI3-xClx heterostructures via localized surface plasmon resonance coupling. Opt. Lett. 41, 4297–4300 (2016).

    Article  CAS  Google Scholar 

  • Storm, M. M. et al. Spectral behavior of plasmon enhanced fluorescence in organic–inorganic perovskite quantum dot solutions. Phys. Scr. 94, 055503 (2019).

    Article  Google Scholar 

  • Juan, F. et al. Photoluminescence enhancement of perovskite CsPbBr3 quantum dots by plasmonic Au nanorods. Chem. Phys. 530, 110627 (2020).

    Article  CAS  Google Scholar 

  • Chen, P. et al. Nearly 100% efficiency enhancement of CH3NH3PbBr3 perovskite light-emitting diodes by utilizing plasmonic Au nanoparticles. J. Phys. Chem. Lett. 8, 3961–3969 (2017).

    Article  CAS  Google Scholar 

  • Liu, J. et al. Rational energy band alignment and Au nanoparticles in surface plasmon enhanced Si-based perovskite quantum dot light-emitting diodes. Adv. Opt. Mater. 6, 1800693 (2018).

    Article  Google Scholar 

  • Zhang, Y. et al. Enhancing luminescence in all-inorganic perovskite surface plasmon light-emitting diode by incorporating Au-Ag alloy nanoparticle. Opt. Mater. 89, 563–567 (2019).

    Article  CAS  Google Scholar 

  • Shi, Z. et al. Localized surface plasmon enhanced all-inorganic perovskite quantum dot light-emitting diodes based on coaxial core/shell heterojunction architecture. Adv. Funct. Mater. 28, 1707031 (2018).

    Article  Google Scholar 

  • Möller, S. & Forrest, S. R. Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays. J. Appl. Phys. 91, 3324 (2002).

    Article  Google Scholar 

  • Do, Y. R., Kim, Y. C., Song, Y. W. & Lee, Y. H. Enhanced light extraction efficiency from organic light emitting diodes by insertion of a two-dimensional photonic crystal structure. J. Appl. Phys. 96, 7629 (2004).

    Article  CAS  Google Scholar 

  • Feng, J., Kawata, S. & Okamoto, T. Enhancement of electroluminescence through a two-dimensional corrugated metal film by grating-induced surface-plasmon cross coupling. Opt. Lett. 30, 2302–2304 (2005).

    Article  Google Scholar 

  • Agrawal, M., Sun, Y., Forrest, S. R. & Peumans, P. Enhanced outcoupling from organic light-emitting diodes using aperiodic dielectric mirrors. Appl. Phys. Lett. 90, 241112 (2007).

    Article  Google Scholar 

  • Tsutsui, T., Yahiro, M., Yokogawa, H., Kawano, K. & Yokoyama, M. Doubling coupling-out efficiency in organic light-emitting devices using a thin silica aerogel layer. Adv. Mater. 13, 1149–1152 (2001).

    <a data-track="click" rel="nofollow noopener" data-track-label="10.1002/1521-4095(200108)13:153.0.CO;2-2" data-track-action="article reference" href="https://doi.org/10.1002%2F1521-4095%28200108%2913%3A15%3C1149%3A%3AAID-ADMA1149%3E3.0.CO%3B2-2" aria-label="Article reference 81" data-doi="10.1002/1521-4095(200108)13:153.0.CO;2-2">Article  CAS  Google Scholar 

  • Gifford, D. K. & Hall, D. G. Emission through one of two metal electrodes of an organic light-emitting diode via surface-plasmon cross coupling. Appl. Phys. Lett. 81, 4315 (2002).

    Article  CAS  Google Scholar 

  • Salehi, A., Chen, Y., Fu, X., Peng, C. & So, F. Manipulating refractive index in organic light-emitting diodes. ACS Appl. Mater. Interf. 10, 9595–9601 (2018).

    Article  CAS  Google Scholar 

  • Lee, K. H. et al. Over 40 cd/A efficient green quantum dot electroluminescent device comprising uniquely large-sized quantum dots. ACS Nano 8, 4893–4901 (2014).

    Article  CAS  Google Scholar 

  • Pan, J. et al. Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering. Adv. Mater. 28, 8718–8725 (2016).

    Article  CAS  Google Scholar 

  • Kim, Y. H. et al. Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes. Nat. Photon. 15, 148–155 (2021).

    Article  CAS  Google Scholar 

  • Kumar, S. et al. Anisotropic nanocrystal superlattices overcoming intrinsic light outcoupling efficiency limit in perovskite quantum dot light-emitting diodes. Nat. Commun. 13, 2106 (2022).

    Article  CAS  Google Scholar 

  • Chen, W. et al. Highly bright and stable single-crystal perovskite light-emitting diodes. Nat. Photon. 17, 401–407 (2023).

    Article  CAS  Google Scholar 

  • Sun, Y. et al. Bright and stable perovskite light-emitting diodes in the near-infrared range. Nature 615, 830–835 (2023).

    Article  CAS  Google Scholar 

  • Ye, Y.-C. et al. Minimizing optical energy losses for long-lifetime perovskite light-emitting diodes. Adv. Funct. Mater. 31, 2105813 (2021).

    Article  CAS  Google Scholar 

  • Time Stamp:

    More from Nature Nanotechnology