Sign reversal of the Josephson inductance magnetochiral anisotropy and 0–π-like transitions in supercurrent diodes - Nature Nanotechnology

Sign reversal of the Josephson inductance magnetochiral anisotropy and 0–π-like transitions in supercurrent diodes – Nature Nanotechnology

Source Node: 2763979
  • Ando, F. et al. Observation of superconducting diode effect. Nature 584, 373–376 (2020).

  • Baumgartner, C. et al. Supercurrent rectification and magnetochiral effects in symmetric Josephson junctions. Nat. Nanotechnol. 17, 39–44 (2022).

  • Baumgartner, C. et al. Effect of Rashba and Dresselhaus spin–orbit coupling on supercurrent rectification and magnetochiral anisotropy of ballistic Josephson junctions. J. Phys. Condens. Matter 34, 154005 (2022).

    Article  CAS  Google Scholar 

  • Wu, H. et al. The field-free Josephson diode in a van der Waals heterostructure. Nature 604, 653–656 (2022).

  • Jeon, K.-R. et al. Zero-field polarity-reversible Josephson supercurrent diodes enabled by a proximity-magnetized Pt barrier. Nat. Mater. 21, 1008–1013 (2022).

  • Pal, B. et al. Josephson diode effect from Cooper pair momentum in a topological semimetal. Nat. Phys. https://doi.org/10.1038/s41567-022-01699-5 (2022).

  • Bauriedl, L. et al. Supercurrent diode effect and magnetochiral anisotropy in few-layer NbSe2. Nat. Commun. 13, 4266 (2022).

    Article  CAS  Google Scholar 

  • Turini, B. et al. Josephson diode effect in high-mobility InSb nanoflags. Nano Lett. 22, 8502–8508 (2022).

    Article  CAS  Google Scholar 

  • Gupta, M. et al. Gate-tunable superconducting diode effect in a three-terminal Josephson device. Nat. Commun. 14, 3078 (2023).

  • Zhang, B. et al. Evidence of φ0-Josephson junction from skewed diffraction patterns in Sn-InSb nanowires. Preprint at arXiv https://doi.org/10.48550/arXiv.2212.00199 (2022).

  • Mazur, G. P. et al. The gate-tunable Josephson diode. Preprint at arXiv https://doi.org/10.48550/arXiv.2211.14283 (2022).

  • Diez-Merida, J. et al. Symmetry-broken Josephson junctions and superconducting diodes in magic-angle twisted bilayer graphene. Nat. Commun. 14, 2396 (2023).

  • Lin, J.-X. et al. Zero-field superconducting diode effect in small-twist-angle trilayer graphene. Nat. Phys. 18, 1221–1227 (2022).

  • Scammell, H. D., Li, J. I. A. & Scheurer, M. S. Theory of zero-field superconducting diode effect in twisted trilayer graphene. 2D Mater. 9, 025027 (2022).

    Article  Google Scholar 

  • Lu, B., Ikegaya, S., Burset, P., Tanaka, Y. & Nagaosa, N. Josephson diode effect on the surface of topological insulators. Preprint at arXiv https://doi.org/10.48550/arXiv.2211.10572 (2022).

  • Fu, P.-H., Xu, Y., Lee, C. H., Ang, Y. S. & Liu, J.-F. Gate-tunable high-efficiency topological Josephson diode. Preprint at arXiv https://doi.org/10.48550/arXiv.2212.01980 (2022).

  • Daido, A., Ikeda, Y. & Yanase, Y. Intrinsic superconducting diode effect. Phys. Rev. Lett. 128, 037001 (2022).

    Article  CAS  Google Scholar 

  • Yuan, N. F. Q. & Fu, L. Supercurrent diode effect and finite-momentum superconductors. Proc. Natl Acad. Sci. USA 119, e2119548119 (2022).

    Article  CAS  Google Scholar 

  • He, J. J., Tanaka, Y. & Nagaosa, N. A phenomenological theory of superconductor diodes. New J. Phys. 24, 053014 (2022).

    Article  Google Scholar 

  • Ilić, S. & Bergeret, F. S. Theory of the supercurrent diode effect in Rashba superconductors with arbitrary disorder. Phys. Rev. Lett. 128, 177001 (2022).

    Article  Google Scholar 

  • Legg, H. F., Loss, D. & Klinovaja, J. Superconducting diode effect due to magnetochiral anisotropy in topological insulators and rashba nanowires. Phys. Rev. B 106, 104501 (2022).

    Article  CAS  Google Scholar 

  • Kochan, D., Costa, A., Zhumagulov, I. and Žutić, I. Phenomenological theory of the supercurrent diode effect: the Lifshitz invariant. Preprint at arXiv https://doi.org/10.48550/arXiv.2303.11975 (2023).

  • Andreev, A. F. Electron spectrum of the intermediate state of superconductors. Zh. Eksp. Teor. Fiz. 49, 655 (1966). J. Exp. Theor. Phys. 22, 455–458 (1966).

  • Davydova, M., Prembabu, S. & and Fu, L. Universal Josephson diode effect. Sci. Adv. 8, eabo0309 (2022).

  • Grein, R., Eschrig, M., Metalidis, G. & Schön, G. Spin-dependent Cooper pair phase and pure spin supercurrents in strongly polarized ferromagnets. Phys. Rev. Lett. 102, 227005 (2009).

  • Bezuglyi, E. V., Rozhavsky, A. S., Vagner, I. D. & Wyder, P. Combined effect of Zeeman splitting and spin-orbit interaction on the Josephson current in a superconductor–two-dimensional electron gas–superconductor structure. Phys. Rev. B 66, 052508 (2002).

    Article  Google Scholar 

  • Krive, I. V., Gorelik, L. Y., Shekhter, R. I. & Jonson, M. Chiral symmetry breaking and the Josephson current in a ballistic superconductor–quantum wire–superconductor junction. Low. Temp. Phys. 30, 398–404 (2004).

    Article  CAS  Google Scholar 

  • Buzdin, A. Direct coupling between magnetism and superconducting current in the Josephson φ0 junction. Phys. Rev. Lett. 101, 107005 (2008).

    Article  CAS  Google Scholar 

  • Reynoso, A. A., Usaj, G., Balseiro, C. A., Feinberg, D. & Avignon, M. Anomalous Josephson current in junctions with spin polarizing quantum point contacts. Phys. Rev. Lett. 101, 107001 (2008).

    Article  CAS  Google Scholar 

  • Zazunov, A., Egger, R., Jonckheere, T. & Martin, T. Anomalous Josephson current through a spin-orbit coupled quantum dot. Phys. Rev. Lett. 103, 147004 (2009).

    Article  CAS  Google Scholar 

  • Liu, J.-F. & Chan, K. S. Relation between symmetry breaking and the anomalous Josephson effect. Phys. Rev. B 82, 125305 (2010).

    Article  Google Scholar 

  • Liu, J.-F. & Chan, K. S. Anomalous Josephson current through a ferromagnetic trilayer junction. Phys. Rev. B 82, 184533 (2010).

    Article  Google Scholar 

  • Liu, J.-F., Chan, K. S. & Wang, J. Anomalous Josephson current through a ferromagnet-semiconductor hybrid structure. J. Phys. Soc. Jpn 80, 124708 (2011).

    Article  Google Scholar 

  • Reynoso, A. A., Usaj, G., Balseiro, C. A., Feinberg, D. & Avignon, M. Spin-orbit-induced chirality of Andreev states in Josephson junctions. Phys. Rev. B 86, 214519 (2012).

    Article  Google Scholar 

  • Yokoyama, T., Eto, M. & Nazarov, Y. V. Josephson current through semiconductor nanowire with spin–orbit interaction in magnetic field. J. Phys. Soc. Jpn 82, 054703 (2013).

    Article  Google Scholar 

  • Brunetti, A., Zazunov, A., Kundu, A. & Egger, R. Anomalous Josephson current, incipient time-reversal symmetry breaking, and Majorana bound states in interacting multilevel dots. Phys. Rev. B 88, 144515 (2013).

    Article  Google Scholar 

  • Yokoyama, T., Eto, M. & Nazarov, Y. V. Anomalous Josephson effect induced by spin-orbit interaction and Zeeman effect in semiconductor nanowires. Phys. Rev. B 89, 195407 (2014).

    Article  Google Scholar 

  • Shen, K., Vignale, G. & Raimondi, R. Microscopic theory of the inverse Edelstein effect. Phys. Rev. Lett. 112, 096601 (2014).

    Article  Google Scholar 

  • Konschelle, F., Tokatly, I. V. & Bergeret, F. S. Theory of the spin-galvanic effect and the anomalous phase shift φ0 in superconductors and Josephson junctions with intrinsic spin-orbit coupling. Phys. Rev. B 92, 125443 (2015).

    Article  Google Scholar 

  • Szombati, D. B. et al. Josephson φ0-junction in nanowire quantum dots. Nat. Phys. 12, 568–572 (2016).

    Article  CAS  Google Scholar 

  • Assouline, A. et al. Spin-orbit induced phase-shift in Bi2Se3 Josephson junctions. Nat. Commun. 10, 126 (2019).

    Article  Google Scholar 

  • Mayer, W. et al. Gate controlled anomalous phase shift in Al/InAs Josephson junctions. Nat. Commun. 11, 212 (2020).

    Article  CAS  Google Scholar 

  • Strambini, E. et al. A Josephson phase battery. Nat. Nanotechnol. 15, 656–660 (2020).

    Article  CAS  Google Scholar 

  • Baumgartner, C. et al. Josephson inductance as a probe for highly ballistic semiconductor-superconductor weak links. Phys. Rev. Lett. 126, 037001 (2021).

    Article  CAS  Google Scholar 

  • De Gennes, P. G. Superconductivity of Metals and Alloys (Addison Wesley, 1989).

  • Li, C. et al. Zeeman-effect-induced 0−π transitions in ballistic Dirac semimetal Josephson junctions. Phys. Rev. Lett. 123, 026802 (2019).

    Article  CAS  Google Scholar 

  • Hart, S. et al. Controlled finite momentum pairing and spatially varying order parameter in proximitized HgTe quantum wells. Nat. Phys. 13, 87–93 (2017).

  • Chen, A. Q. et al. Finite momentum Cooper pairing in three-dimensional topological insulator Josephson junctions. Nat. Commun. 9, 3478 (2018).

    Article  Google Scholar 

  • Ke, C. T. et al. Ballistic superconductivity and tunable π–junctions in InSb quantum wells. Nat. Commun. 10, 3764 (2019).

    Article  Google Scholar 

  • Whiticar, A. M. et al. Zeeman-driven parity transitions in an Andreev quantum dot. Phys. Rev. B 103, 245308 (2021).

    Article  CAS  Google Scholar 

  • Shin, J. et al. Magnetic proximity-induced superconducting diode effect and infinite magnetoresistance in a van der Waals heterostructure. Phys. Rev. Res. 5, L022064 (2023).

  • Hou, Y. et al. Ubiquitous superconducting diode effect in superconductor thin films. Preprint at arXiv https://doi.org/10.48550/arXiv.2205.09276 (2022).

  • Suri, D. et al. Non-reciprocity of vortex-limited critical current in conventional superconducting micro-bridges. Appl. Phys. Lett. 121, 102601 (2022).

    Article  CAS  Google Scholar 

  • Sundaresh, A., Vayrynen, J. I., Lyanda-Geller, Y. & Rokhinson, L. P. Diamagnetic mechanism of critical current non-reciprocity in multilayered superconductors. Nat. Commun. 14, 1628 (2023).

  • Legg, H. F., Laubscher, K., Loss, D. & Klinovaja, J. Parity protected superconducting diode effect in topological Josephson junctions. Preprint at arXiv https://doi.org/10.48550/arXiv.2301.13740 (2023).

  • Frattini, N. E. et al. 3-wave mixing Josephson dipole element. Appl. Phys. Lett. 110, 222603 (2017).

    Article  Google Scholar 

  • Leroux, C. et al. Nonreciprocal devices based on voltage-tunable junctions. Preprint at arXiv https://doi.org/10.48550/arXiv.2209.06194 (2022).

  • Roudsari, A. F. et al. Three-wave mixing traveling-wave parametric amplifier with periodic variation of the circuit parameters. Appl. Phys. Lett. 122, 052601 (2023).

    Article  Google Scholar 

  • Banerjee, A. et al. Phase asymmetry of Andreev spectra from Cooper-pair momentum. Preprint at arXiv https://doi.org/10.48550/arXiv.2301.01881 (2023).

  • Lotfizadeh, N. et al. Superconducting diode effect sign change in epitaxial Al-InAs Josepshon junctions. Preprint at arXiv https://doi.org/10.48550/arXiv.2303.01902 (2023).

  • Žutić, I. & Valls, O. T. Tunneling spectroscopy for ferromagnet/superconductor junctions. Phys. Rev. B 61, 1555–1566 (2000).

    Article  Google Scholar 

  • Blonder, G. E., Tinkham, M. & Klapwijk, T. M. Transition from metallic to tunneling regimes in superconducting microconstrictions: excess current, charge imbalance, and supercurrent conversion. Phys. Rev. B 25, 4515–4532 (1982).

    Article  CAS  Google Scholar 

  • Dartiailh, M. C. et al. Phase signature of topological transition in Josephson junctions. Phys. Rev. Lett. 126, 036802 (2021).

    Article  CAS  Google Scholar 

  • Time Stamp:

    More from Nature Nanotechnology