Neutrophil hitchhiking for drug delivery to the bone marrow

Neutrophil hitchhiking for drug delivery to the bone marrow

Source Node: 2601816
  • Rodan Gideon, A. & Martin, T. J. Therapeutic approaches to bone diseases. Science 289, 1508–1514 (2000).

    Article  Google Scholar 

  • Chaudhari, K. R. et al. Bone metastasis targeting: a novel approach to reach bone using Zoledronate anchored PLGA nanoparticle as carrier system loaded with Docetaxel. J. Control. Release 158, 470–478 (2012).

    Article  Google Scholar 

  • Tavassoli, M. The marrow–blood barrier. Br. J. Haematol. 41, 297–302 (1979).

    Article  CAS  Google Scholar 

  • Adjei, I. M., Sharma, B., Peetla, C. & Labhasetwar, V. Inhibition of bone loss with surface-modulated, drug-loaded nanoparticles in an intraosseous model of prostate cancer. J. Control. Release 232, 83–92 (2016).

    Article  CAS  Google Scholar 

  • Sun, W. et al. Bone-targeted nanoplatform combining zoledronate and photothermal therapy to treat breast cancer bone metastasis. ACS Nano 13, 7556–7567 (2019).

    Article  CAS  Google Scholar 

  • Chen, Q. et al. Bone targeted delivery of SDF-1 via alendronate functionalized nanoparticles in guiding stem cell migration. ACS Appl. Mater. Interfaces 10, 23700–23710 (2018).

    Article  CAS  Google Scholar 

  • Mann, A. P. et al. E-selectin-targeted porous silicon particle for nanoparticle delivery to the bone marrow. Adv. Mater. 23, H278–H282 (2011).

    Article  CAS  Google Scholar 

  • Wang, H. et al. Tetracycline-grafted PLGA nanoparticles as bone-targeting drug delivery system. Int. J. Nanomed. 10, 5671–5685 (2015).

    CAS  Google Scholar 

  • Aoki, K., Alles, N., Soysa, N. & Ohya, K. Peptide-based delivery to bone. Adv. Drug Deliv. Rev. 64, 1220–1238 (2012).

    Article  CAS  Google Scholar 

  • Lavrador, P., Gaspar, V. M. & Mano, J. F. Stimuli-responsive nanocarriers for delivery of bone therapeutics – barriers and progresses. J. Control. Release 273, 51–67 (2018).

    Article  CAS  Google Scholar 

  • Lahoz-Beneytez, J. et al. Human neutrophil kinetics: modeling of stable isotope labeling data supports short blood neutrophil half-lives. Blood 127, 3431–3438 (2016).

    Article  CAS  Google Scholar 

  • Theilgaard-Mönch, K. et al. The transcriptional program of terminal granulocytic differentiation. Blood 105, 1785–1796 (2005).

    Article  Google Scholar 

  • Martin, C. et al. Chemokines acting via CXCR2 and CXCR4 control the release of neutrophils from the bone marrow and their return following senescence. Immunity 19, 583–593 (2003).

    Article  CAS  Google Scholar 

  • Cacalano, G. et al. Neutrophil and B cell expansion in mice that lack the murine IL-8 receptor homolog. Science 265, 682–684 (1994).

    Article  CAS  Google Scholar 

  • Eash, K. J., Greenbaum, A. M., Gopalan, P. K. & Link, D. C. CXCR2 and CXCR4 antagonistically regulate neutrophil trafficking from murine bone marrow. J. Clin. Invest. 120, 2423–2431 (2010).

    Article  CAS  Google Scholar 

  • Lawrence, S. M., Corriden, R. & Nizet, V. How neutrophils meet their end. Trends Immunol. 41, 531–544 (2020).

    Article  CAS  Google Scholar 

  • Borregaard, N. Neutrophils, from marrow to microbes. Immunity 33, 657–670 (2010).

    Article  CAS  Google Scholar 

  • Wang, J. et al. Visualizing the function and fate of neutrophils in sterile injury and repair. Science 358, 111–116 (2017).

    Article  CAS  Google Scholar 

  • Garner, H. & de Visser, K. E. Neutrophils take a round-trip. Science 358, 42–43 (2017).

    Article  CAS  Google Scholar 

  • Furze, R. C. & Rankin, S. M. Neutrophil mobilization and clearance in the bone marrow. Immunology 125, 281–288 (2008).

    Article  CAS  Google Scholar 

  • Suratt, B. T. et al. Neutrophil maturation and activation determine anatomic site of clearance from circulation. Am. J. Physiol. Lung Cell. Mol. Physiol. 281, L913–L921 (2001).

    Article  CAS  Google Scholar 

  • Løvås, K., Knudsen, E., Iversen, P. O. & Benestad, H. B. Sequestration patterns of transfused rat neutrophilic granulocytes under normal and inflammatory conditions. Eur. J. Haematol. 56, 221–229 (1996).

    Article  Google Scholar 

  • Hofman, M. S. et al. 177Lu-PSMA-617 versus cabazitaxel in patients with metastatic castration-resistant prostate cancer (TheraP): a randomised, open-label, phase 2 trial. Lancet 397, 797–804 (2021).

    Article  CAS  Google Scholar 

  • Wang, J. et al. ROS-responsive nanocomplex of aPD-L1 and cabazitaxel improves intratumor delivery and potentiates radiation-mediated antitumor immunity. Nano Lett. 22, 8312–8320 (2022).

    Article  Google Scholar 

  • Blick, S. K. A., Dhillon, S. & Keam, S. J. Teriparatide. Drugs 68, 2709–2737 (2008).

    Article  CAS  Google Scholar 

  • Xue, J. et al. Neutrophil-mediated anticancer drug delivery for suppression of postoperative malignant glioma recurrence. Nat. Nanotechnol. 12, 692–700 (2017).

    Article  CAS  Google Scholar 

  • Schwartz, R. S. & Erban, J. K. Timing of metastasis in breast cancer. N. Engl. J. Med. 376, 2486–2488 (2017).

    Article  Google Scholar 

  • Cai, W.-L. et al. microRNA-124 inhibits bone metastasis of breast cancer by repressing Interleukin-11. Mol. Cancer 17, 9 (2018).

    Article  Google Scholar 

  • Taguchi, T. SY7-2 – treatment strategy of bone metastasis in breast cancer. Ann. Oncol. 28, ix33 (2017).

    Article  Google Scholar 

  • Parveen, S. et al. Therapeutic targeting with DABIL-4 depletes myeloid suppressor cells in 4T1 triple-negative breast cancer model. Mol. Oncol. 15, 1330–1344 (2021).

    Article  CAS  Google Scholar 

  • Balog, J. et al. Single cell mass cytometry revealed the immunomodulatory effect of cisplatin via downregulation of splenic CD44+, IL-17A+ MDSCs and promotion of circulating IFN-γ myeloid cells in the 4T1 metastatic breast cancer model. Int. J. Mol. Sci. 21, 170 (2019).

    Article  Google Scholar 

  • DuPre, S. A. & Hunter, K. W. Jr Murine mammary carcinoma 4T1 induces a leukemoid reaction with splenomegaly: association with tumor-derived growth factors. Exp. Mol. Pathol. 82, 12–24 (2007).

    Article  CAS  Google Scholar 

  • Yun, H. M. et al. 2,4,5-Trimethoxyldalbergiquinol promotes osteoblastic differentiation and mineralization via the BMP and Wnt/β-catenin pathway. Cell Death Dis. 6, e1819 (2015).

    Article  CAS  Google Scholar 

  • Al Rifai, O. et al. Proprotein convertase furin regulates osteocalcin and bone endocrine function. J. Clin. Invest. 127, 4104–4117 (2017).

    Article  Google Scholar 

  • Yeom, J., Ma, S. & Lim, Y.-H. Probiotic Propionibacterium freudenreichii MJ2 enhances osteoblast differentiation and mineralization by increasing the OPG/RANKL ratio. Microorganisms 9, 673 (2021).

    Article  CAS  Google Scholar 

  • An, J. M. et al. Oral delivery of parathyroid hormone using a triple-padlock nanocarrier for osteoporosis via an enterohepatic circulation pathway. ACS Appl. Mater. Interfaces 13, 23314–23327 (2021).

    Article  CAS  Google Scholar 

  • Bain, B. J. & England, J. M. Normal haematological values: sex difference in neutrophil count. Br. Med. J. 1, 306–309 (1975).

    Article  CAS  Google Scholar 

  • Wright, L. E. et al. Murine models of breast cancer bone metastasis. Bonekey Rep. 5, 804–804 (2016).

    Article  CAS  Google Scholar 

  • Time Stamp:

    More from Nature Nanotechnology