Solving integral equations in free space with inverse-designed ultrathin optical metagratings

Solving integral equations in free space with inverse-designed ultrathin optical metagratings

Source Node: 1897758
  • Athale, R. & Psaltis, D. Optical computing: past and future. Opt. Photon. News 27, 32–39 (2016).

    Article  Google Scholar 

  • Solli, D. R. & Jalali, B. Analog optical computing. Nat. Photon. 9, 704–706 (2015).

    Article  CAS  Google Scholar 

  • Zangeneh-Nejad, F., Sounas, D. L., Alù, A. & Fleury, R. Analogue computing with metamaterials. Nat. Rev. Mater. 6, 207–225, (2020).

    Article  Google Scholar 

  • Silva, A. et al. Performing mathematical operations with metamaterials. Science 343, 160–163 (2014).

    Article  CAS  Google Scholar 

  • Zhu, T. et al. Plasmonic computing of spatial differentiation. Nat. Commun. 8, 15391 (2017).

    Article  CAS  Google Scholar 

  • Zhu, T. et al. Generalized spatial differentiation from the spin Hall effect of light and its application in image processing of edge detection. Phys. Rev. Appl. 11, 034043 (2019).

    Article  CAS  Google Scholar 

  • Zhu, T. et al. Topological optical differentiator. Nat. Commun. 12, 680 (2021).

    Article  CAS  Google Scholar 

  • Guo, C., Xiao, M., Minkov, M., Shi, Y. & Fan, S. Photonic crystal slab Laplace operator for image differentiation. Optica 5, 251–256 (2018).

    Article  Google Scholar 

  • Guo, C., Xiao, M., Minkov, M., Fan, S. & Shi, Y. Isotropic wavevector domain image filters by a photonic crystal slab device. J. Opt. Soc. Am. A 35, 1685–1691 (2018).

    Article  Google Scholar 

  • Wang, H., Guo, C., Zhao, Z. & Fan, S. Compact incoherent image differentiation with nanophotonic structures. ACS Photon. 7, 338–343 (2020).

    Article  CAS  Google Scholar 

  • Kwon, H., Sounas, D., Cordaro, A., Polman, A. & Alù, A. Nonlocal metasurfaces for optical signal processing. Phys. Rev. Lett. 121, 173004 (2018).

    Article  CAS  Google Scholar 

  • Cordaro, A. et al. High-index dielectric metasurfaces performing mathematical operations. Nano Lett. 19, 8418–8423 (2019).

    Article  CAS  Google Scholar 

  • Youssefi, A., Zangeneh-Nejad, F., Abdollahramezani, S. & Khavasi, A. Analog computing by Brewster effect. Opt. Lett. 41, 3467–3470 (2016).

    Article  Google Scholar 

  • Momeni, A., Rajabalipanah, H., Abdolali, A. & Achouri, K. Generalized optical signal processing based on multioperator metasurfaces synthesized by susceptibility tensors. Phys. Rev. Appl. 11, 064042 (2019).

    Article  CAS  Google Scholar 

  • Abdollahramezani, S., Hemmatyar, O. & Adibi, A. Meta-optics for spatial optical analog computing. Nanophotonics 9, 4075–4095 (2020).

    Article  Google Scholar 

  • Moeini, M. M. & Sounas, D. L. Discrete space optical signal processing. Optica 7, 1325–1331 (2020).

    Article  Google Scholar 

  • Zhou, Y., Zheng, H., Kravchenko, I. I. & Valentine, J. Flat optics for image differentiation. Nat. Photon. 14, 316–323 (2020).

    Article  CAS  Google Scholar 

  • Pors, A., Nielsen, M. G. & Bozhevolnyi, S. I. Analog computing using reflective plasmonic metasurfaces. Nano Lett. 15, 791–797 (2015).

    Article  CAS  Google Scholar 

  • Bykov, D. A. et al. First-order optical spatial differentiator based on a guided-mode resonant grating. Opt. Express 26, 10997–11006 (2018).

    Article  CAS  Google Scholar 

  • Kwon, H., Cordaro, A., Sounas, D., Polman, A. & Alù, A. Dual-polarization analog 2D image processing with nonlocal metasurfaces. ACS Photon. 7, 1799–1805 (2020).

    Article  CAS  Google Scholar 

  • Bogaerts, W. et al. Programmable photonic circuits. Nature 586, 207–216 (2020).

    Article  CAS  Google Scholar 

  • Shen, Y. et al. Deep learning with coherent nanophotonic circuits. Nat. Photon. 11, 441–446 (2017).

    Article  CAS  Google Scholar 

  • Shastri, B. J. et al. Photonics for artificial intelligence and neuromorphic computing. Nat. Photon. 15, 102–114 (2021).

    Article  CAS  Google Scholar 

  • van de Burgt, Y. et al. A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. Nat. Mater. 16, 414–418 (2017).

    Article  Google Scholar 

  • Van De Burgt, Y., Melianas, A., Keene, S. T., Malliaras, G. & Salleo, A. Organic electronics for neuromorphic computing. Nat. Electron. 1, 386–397 (2018).

    Article  Google Scholar 

  • Zangeneh-Nejad, F. & Fleury, R. Performing mathematical operations using high-index acoustic metamaterials. New J. Phys. 20, 073001 (2018).

  • Zangeneh-Nejad, F. & Fleury, R. Topological analog signal processing. Nat. Commun. 10, 2058 (2019).

    Article  Google Scholar 

  • Hughes, T. W., Williamson, I. A. D., Minkov, M. & Fan, S. Wave physics as an analog recurrent neural network. Sci. Adv. 5, eaay6946 (2019).

    Article  Google Scholar 

  • Mohammadi Estakhri, N., Edwards, B. & Engheta, N. Inverse-designed metastructures that solve equations. Science 363, 1333–1338 (2019).

    Article  CAS  Google Scholar 

  • Camacho, M., Edwards, B. & Engheta, N. A single inverse-designed photonic structure that performs parallel computing. Nat. Commun. 12, 1466 (2021).

    Article  CAS  Google Scholar 

  • Arfken, G. B., Weber, H. J. & Harris, F. E. Mathematical Methods for Physicists (Elsevier, 2013).

  • Oldenburger, R. Infinite powers of matrices and characteristic roots. Duke Math. J. 6, 357–361 (1940).

    Article  Google Scholar 

  • Molesky, S. et al. Inverse design in nanophotonics. Nat. Photon. 12, 659–670 (2018).

    Article  CAS  Google Scholar 

  • Piggott, A. Y. et al. Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer. Nat. Photon. 9, 374–377 (2015).

    Article  CAS  Google Scholar 

  • Sell, D., Yang, J., Doshay, S., Yang, R. & Fan, J. A. Large-angle, multifunctional metagratings based on freeform multimode geometries. Nano Lett. 17, 3752–3757 (2017).

    Article  CAS  Google Scholar 

  • Lalau-Keraly, C. M., Bhargava, S., Miller, O. D. & Yablonovitch, E. Adjoint shape optimization applied to electromagnetic design. Opt. Express 21, 21693 (2013).

    Article  Google Scholar 

  • Hughes, T. W., Minkov, M., Williamson, I. A. D. & Fan, S. Adjoint method and inverse design for nonlinear nanophotonic devices. ACS Photon. 5, 4781–4787 (2018).

    Article  CAS  Google Scholar 

  • Green, M. A. Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients. Sol. Energy Mater. Sol. Cells 92, 1305–1310 (2008).

    Article  CAS  Google Scholar 

  • Kelly, R. L. Program of the 1972 Annual Meeting of the Optical Society of America. J. Opt. Soc. Am. 62, 1336 (1972).

    Article  Google Scholar 

  • Malitson, I. H. Interspecimen comparison of the refractive index of fused silica. J. Opt. Soc. Am. 55, 1205–1209 (1965).

    Article  CAS  Google Scholar 

  • Jiang, J. et al. Free-form diffractive metagrating design based on generative adversarial networks. ACS Nano 13, 8872–8878 (2019).

    Article  CAS  Google Scholar 

  • Goodman, J. W., Dias, A. R. & Woody, L. M. Fully parallel, high-speed incoherent optical method for performing discrete Fourier transforms. Opt. Lett. 2, 1–3 (1978).

    Article  CAS  Google Scholar 

  • Athale, R. A. & Collins, W. C. Optical matrix–matrix multiplier based on outer product decomposition. Appl. Opt. 21, 2089–2090 (1982).

    Article  CAS  Google Scholar 

  • Farhat, N. H., Psaltis, D., Prata, A. & Paek, E. Optical implementation of the Hopfield model. Appl. Opt. 24, 1469–1475 (1985).

    Article  CAS  Google Scholar 

  • Zhu, W., Zhang, L., Lu, Y., Zhou, P. & Yang, L. Design and experimental verification for optical module of optical vector–matrix multiplier. Appl. Opt. 52, 4412–4418 (2013).

    Article  Google Scholar 

  • Spall, J., Guo, X., Barrett, T. D. & Lvovsky, A. I. Fully reconfigurable coherent optical vector–matrix multiplication. Opt. Lett. 45, 5752–5755 (2020).

    Article  Google Scholar 

  • Rosenblatt, G., Simkhovich, B., Bartal, G. & Orenstein, M. Nonmodal plasmonics: controlling the forced optical response of nanostructures. Phys. Rev. X 10, 011071 (2020).

    CAS  Google Scholar 

  • Li, L. Bremmer series, R-matrix propagation algorithm, and numerical modeling of diffraction gratings. J. Opt. Soc. Am. A 11, 2829–2836 (1994).

    Article  Google Scholar 

  • Sukham, J., Takayama, O., Lavrinenko, A. V. & Malureanu, R. High-quality ultrathin gold layers with an APTMS adhesion for optimal performance of surface plasmon polariton-based devices. ACS Appl. Mater. Interfaces 9, 25049–25056 (2017).

    Article  CAS  Google Scholar 

  • Verschuuren, M. A., Knight, M. W., Megens, M. & Polman, A. Nanoscale spatial limitations of large-area substrate conformal imprint lithography. Nanotechnology 30, 345301 (2019).

    Article  CAS  Google Scholar 

  • Lalanne, P., Hugonin, J. P. & Chavel, P. Optical properties of deep lamellar gratings: a coupled Bloch-mode insight. J. Light. Technol. 24, 2442–2449 (2006).

    Article  Google Scholar 

  • Time Stamp:

    More from Nature Nanotechnology