Tailoring renal-clearable zwitterionic cyclodextrin for colorectal cancer-selective drug delivery

Tailoring renal-clearable zwitterionic cyclodextrin for colorectal cancer-selective drug delivery

Source Node: 2612929
  • Blanco, E. et al. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33, 941–951 (2015).

    Article  CAS  Google Scholar 

  • Yu, M. X. & Zheng, J. Clearance pathways and tumor targeting of imaging nanoparticles. ACS Nano 9, 6655–6674 (2015).

    CAS  Google Scholar 

  • Nurunnabi, M. et al. In vivo biodistribution and toxicology of carboxylated graphene quantum dots. ACS Nano 7, 6858–6867 (2013).

    CAS  Google Scholar 

  • Li, B. & Lane, L. A. Probing the biological obstacles of nanomedicine with gold nanoparticles. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 11, e1542 (2019).

    Google Scholar 

  • Zhang, Y. N. et al. Nanoparticle–liver interactions: cellular uptake and hepatobiliary elimination. J. Control. Release 240, 332–348 (2016).

    Article  CAS  Google Scholar 

  • Longmire, M. et al. Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine 3, 703–717 (2008).

    Article  CAS  Google Scholar 

  • Cheng, Y. H. et al. Meta-analysis of nanoparticle delivery to tumors using a physiologically based pharmacokinetic modeling and simulation approach. ACS Nano 14, 3075–3095 (2020).

    CAS  Google Scholar 

  • Lammers, T. Macro-nanomedicine: targeting the big picture. J. Control. Release 294, 372–375 (2019).

    Article  CAS  Google Scholar 

  • Choi, H. S. et al. Renal clearance of quantum dots. Nat. Biotechnol. 25, 1165–1170 (2007).

    Article  CAS  Google Scholar 

  • Liu, J. B. et al. Renal clearable inorganic nanoparticles: a new frontier of bionanotechnology. Mater. Today 16, 477–486 (2013).

    Article  CAS  Google Scholar 

  • Zhou, C. et al. Luminescent gold nanoparticles with efficient renal clearance. Angew. Chem. Int. Ed. 50, 3168–3172 (2011).

    Article  CAS  Google Scholar 

  • Zhou, C. et al. Near-infrared emitting radioactive gold nanoparticles with molecular pharmacokinetics. Angew. Chem. Int. Ed. 51, 10118–10122 (2012).

    Article  CAS  Google Scholar 

  • Liu, J. B. et al. Passive tumor targeting of renal-clearable luminescent gold nanoparticles: long tumor retention and fast normal tissue clearance. J. Am. Chem. Soc. 135, 4978–4981 (2013).

    Article  CAS  Google Scholar 

  • Burns, A. A. et al. Fluorescent silica nanoparticles with efficient urinary excretion for nanomedicine. Nano Lett. 9, 442–448 (2009).

    CAS  Google Scholar 

  • Ruggiero, A. et al. Paradoxical glomerular filtration of carbon nanotubes. Proc. Natl Acad. Sci. USA 107, 12369–12374 (2010).

    Article  CAS  Google Scholar 

  • Peng, C. Q. et al. Correlating anticancer drug delivery efficiency with vascular permeability of renal clearable versus non-renal clearable nanocarriers. Angew. Chem. Int. Ed. 58, 12076–12080 (2019).

    Article  CAS  Google Scholar 

  • Peng, C. Q. et al. Renal clearable nanocarriers: overcoming the physiological barriers for precise drug delivery and clearance. J. Control. Release 322, 64–80 (2020).

    Article  CAS  Google Scholar 

  • Peng, C. et al. Tuning the in vivo transport of anticancer drugs using renal-clearable gold nanoparticles. Angew. Chem. Int. Ed. 58, 8479–8483 (2019).

    Article  CAS  Google Scholar 

  • Liu, J. et al. PEGylation and zwitterionization: pros and cons in the renal clearance and tumor targeting of near-IR-emitting gold nanoparticles. Angew. Chem. Int. Ed. 52, 12572–12576 (2013).

    Article  CAS  Google Scholar 

  • Kang, H. et al. Renal clearable theranostic nanoplatforms for gastrointestinal stromal tumors. Adv. Mater. 32, e1905899 (2020).

    Article  Google Scholar 

  • Kang, H. et al. Renal clearable organic nanocarriers for bioimaging and drug delivery. Adv. Mater. 28, 8162–8168 (2016).

    Article  CAS  Google Scholar 

  • Wang, H. et al. Renal-clearable porphyrinic metal–organic framework nanodots for enhanced photodynamic therapy. ACS Nano 13, 9206–9217 (2019).

    CAS  Google Scholar 

  • Choi, H. S. et al. Design considerations for tumour-targeted nanoparticles. Nat. Nanotechnol. 5, 42–47 (2010).

    Article  CAS  Google Scholar 

  • Huang, H. et al. Inorganic nanoparticles in clinical trials and translations. Nano Today 35, 100972 (2020).

    CAS  Google Scholar 

  • Missaoui, W. N. et al. Toxicological status of nanoparticles: what we know and what we don’t know. Chem. Biol. Interact. 295, 1–12 (2018).

    Article  CAS  Google Scholar 

  • Kang, H. et al. Size-dependent EPR effect of polymeric nanoparticles on tumor targeting. Adv. Healthc. Mater. 9, 1901223 (2020).

    Article  CAS  Google Scholar 

  • Choi, H. S. et al. Targeted zwitterionic near-infrared fluorophores for improved optical imaging. Nat. Biotechnol. 31, 148–153 (2013).

    Article  CAS  Google Scholar 

  • Verbeek, F. P. R. et al. Near-infrared fluorescence imaging of both colorectal cancer and ureters using a low-dose integrin targeted probe. Ann. Surg. Oncol. 21, S528–S537 (2014).

    Article  Google Scholar 

  • Sofias, A. M. et al. Tumor targeting by αvβ3-integrin-specific lipid nanoparticles occurs via phagocyte hitchhiking. ACS Nano 14, 7832–7846 (2020).

    CAS  Google Scholar 

  • McNeeley, K. M. et al. Decreased circulation time offsets increased efficacy of PEGylated nanocarriers targeting folate receptors of glioma. Nanotechnology 18, 385101 (2007).

    Article  Google Scholar 

  • Shuhendler, A. J. et al. A novel solid lipid nanoparticle formulation for active targeting to tumor αvβ3 integrin receptors reveals cyclic RGD as a double-edged sword. Adv. Healthc. Mater. 1, 600–608 (2012).

    Article  CAS  Google Scholar 

  • Cheng, W. W. & Allen, T. M. Targeted delivery of anti-CD19 liposomal doxorubicin in B-cell lymphoma: a comparison of whole monoclonal antibody, Fab′ fragments and single chain Fv. J. Control. Release 126, 50–58 (2008).

    Article  CAS  Google Scholar 

  • Zhang, Y. et al. Strategies and challenges to improve the performance of tumor-associated active targeting. J. Mater. Chem. B 8, 3959–3971 (2020).

    Article  CAS  Google Scholar 

  • Zhao, Z. et al. Targeting strategies for tissue-specific drug delivery. Cell 181, 151–167 (2020).

    Article  CAS  Google Scholar 

  • Bray, F. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 70, 313–313 (2020).

    Article  Google Scholar 

  • McCleary, N. J. et al. Personalizing adjuvant therapy for stage II/III colorectal cancer. Am. Soc. Clin. Oncol. Educ. Book. 37, 232–245 (2017).

    Article  Google Scholar 

  • Jalaeikhoo, H. et al. Effectiveness of adjuvant chemotherapy in patients with stage II colorectal cancer: a multicenter retrospective study. J. Res. Med. Sci. 24, 39 (2019).

    Article  CAS  Google Scholar 

  • Taieb, J. & Gallois, C. Adjuvant chemotherapy for stage III colon cancer. Cancers 12, 2679 (2020).

    Article  CAS  Google Scholar 

  • Braun, M. S. & Seymour, M. T. Balancing the efficacy and toxicity of chemotherapy in colorectal cancer. Ther. Adv. Med. Oncol. 3, 43–52 (2011).

    Article  CAS  Google Scholar 

  • Xie, Y. H. et al. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct. Target. Ther. 5, 22 (2020).

    Article  CAS  Google Scholar 

  • Ooi, H. W. et al. Multivalency enables dynamic supramolecular host-guest hydrogel formation. Biomacromolecules 21, 2208–2217 (2020).

    Article  CAS  Google Scholar 

  • Lee, D. W. et al. Supramolecular assembly based on host–guest interaction between beta-cyclodextrin and adamantane for specifically targeted cancer imaging. J. Ind. Eng. Chem. 57, 37–44 (2018).

    Article  CAS  Google Scholar 

  • Galema, H. A. et al. Fluorescence-guided surgery in colorectal cancer; a review on clinical results and future perspectives. Eur. J. Surg. Oncol. 48, 810–821 (2022).

    Article  Google Scholar 

  • Tringale, K. R. et al. Image-guided surgery in cancer: a strategy to reduce incidence of positive surgical margins. Wiley Interdiscip. Rev. Syst. Biol. 10, e1412 (2018).

    Google Scholar 

  • Keller, D. S. et al. Indocyanine green fluorescence imaging in colorectal surgery: overview, applications, and future directions. Lancet Gastroenterol. Hepatol. 2, 757 (2017).

    Article  Google Scholar 

  • Shukla, A. et al. Blocking of ERK1 and ERK2 sensitizes human mesothelioma cells to doxorubicin. Mol. Cancer 9, 314 (2010).

    Article  CAS  Google Scholar 

  • Salaroglio, I. C. et al. ERK is a pivotal player of chemo-immune-resistance in cancer. Int. J. Mol. Sci. 20, 2505 (2019).

    Article  CAS  Google Scholar 

  • Christowitz, C. et al. Mechanisms of doxorubicin-induced drug resistance and drug resistant tumour growth in a murine breast tumour model. BMC Cancer 19, 757 (2019).

    Article  Google Scholar 

  • Ortiz, R. et al. Nanomedicine to overcome multidrug resistance mechanisms in colon and pancreatic cancer: recent progress. Cancers 13, 2058 (2021).

    Article  CAS  Google Scholar 

  • Kim, D. H. et al. Effects of kefir on doxorubicin-induced multidrug resistance in human colorectal cancer cells. J. Funct. Food 78, 104371 (2021).

    Article  CAS  Google Scholar 

  • Yuan, C. et al. Inclusion complex of astaxanthin with hydroxypropyl-beta-cyclodextrin: UV, FTIR, H-1 NMR and molecular modeling studies. Carbohydr. Polym. 89, 492–496 (2012).

    Article  CAS  Google Scholar 

  • Hamdi, H. et al. Spectroscopic studies of inclusion complex of beta-cyclodextrin and benzidine diammonium dipicrate. Spectrochim. Acta A 75, 32–36 (2010).

    Article  CAS  Google Scholar 

  • Lv, S. et al. High drug loading and sub-quantitative loading efficiency of polymeric micelles driven by donor–receptor coordination interactions. J. Am. Chem. Soc. 140, 1235–1238 (2018).

    Article  CAS  Google Scholar 

  • Hiensch, A. E. et al. Doxorubicin-induced skeletal muscle atrophy: elucidating the underlying molecular pathways. Acta Physiol. 229, e13400 (2020).

    Article  Google Scholar 

  • Ou, H. C. et al. Low-level laser prevents doxorubicin-induced skeletal muscle atrophy by modulating AMPK/SIRT1/PCG-1alpha-mediated mitochondrial function, apoptosis and up-regulation of pro-inflammatory responses. Cell Biosci. 11, 200 (2021).

    Article  CAS  Google Scholar 

  • Henriksen, P. A. Anthracycline cardiotoxicity: an update on mechanisms, monitoring and prevention. Heart 104, 971–977 (2018).

    Article  CAS  Google Scholar 

  • Tian, Z. et al. High cumulative doxorubicin dose for advanced soft tissue sarcoma. BMC Cancer 20, 1139 (2020).

    Article  CAS  Google Scholar 

  • Luo, R. et al. Distinct biodistribution of doxorubicin and the altered dispositions mediated by different liposomal formulations. Int. J. Pharm. 519, 1–10 (2017).

    Article  CAS  Google Scholar 

  • Patel, K. J. et al. Distribution of the anticancer drugs doxorubicin, mitoxantrone and topotecan in tumors and normal tissues. Cancer Chemother. Pharmacol. 72, 127–138 (2013).

    Article  CAS  Google Scholar 

  • Speth, P. A. et al. Clinical pharmacokinetics of doxorubicin. Clin. Pharmacokinet. 15, 15–31 (1988).

    Article  CAS  Google Scholar 

  • Terasaki, T. et al. Pharmacokinetic study on the mechanism of tissue distribution of doxorubicin: interorgan and interspecies variation of tissue-to-plasma partition coefficients in rats, rabbits, and guinea pigs. J. Pharm. Sci. 73, 1359–1363 (1984).

    Article  CAS  Google Scholar 

  • Tredan, O. et al. Drug resistance and the solid tumor microenvironment. J. Natl Cancer Inst. 99, 1441–1454 (2007).

    Article  CAS  Google Scholar 

  • Torok, S. et al. Limited tumor tissue drug penetration contributes to primary resistance against angiogenesis inhibitors. Theranostics 7, 400–412 (2017).

    Article  CAS  Google Scholar 

  • Ziemys, A. et al. Progression-dependent transport heterogeneity of breast cancer liver metastases as a factor in therapeutic resistance. J. Control. Release 291, 99–105 (2018).

    Article  CAS  Google Scholar 

  • Cabral, H. et al. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat. Nanotechnol. 6, 815–823 (2011).

    Article  CAS  Google Scholar 

  • Zhou, Q. et al. Enzyme-activatable polymer–drug conjugate augments tumour penetration and treatment efficacy. Nat. Nanotechnol. 14, 799–809 (2019).

    Article  CAS  Google Scholar 

  • Jain, R. K. & Stylianopoulos, T. Delivering nanomedicine to solid tumors. Nat. Rev. Clin. Oncol. 7, 653–664 (2010).

    Article  CAS  Google Scholar 

  • Waite, C. L. & Roth, C. M. Nanoscale drug delivery systems for enhanced drug penetration into solid tumors: current progress and opportunities. Crit. Rev. Biomed. Eng. 40, 21–41 (2012).

    Article  Google Scholar 

  • Sun, D. X. et al. What went wrong with anticancer nanomedicine design and how to make it right. ACS Nano 14, 12281–12290 (2020).

    CAS  Google Scholar 

  • Feng, H. Y. et al. Targeted micellar phthalocyanine for lymph node metastasis homing and photothermal therapy in an orthotopic colorectal tumor model. Nanomicro Lett. 13, 145 (2021).

    CAS  Google Scholar 

  • Hackl, C. et al. Metronomic oral topotecan prolongs survival and reduces liver metastasis in improved preclinical orthotopic and adjuvant therapy colon cancer models. Gut 62, 259–271 (2013).

    Article  Google Scholar 

  • Song, W. et al. Synergistic and low adverse effect cancer immunotherapy by immunogenic chemotherapy and locally expressed PD-L1 trap. Nat. Commun. 9, 2237 (2018).

    Article  Google Scholar 

  • Zhu, C. et al. Suppress orthotopic colon cancer and its metastasis through exact targeting and highly selective drug release by a smart nanomicelle. Biomaterials 161, 144–153 (2018).

    Article  CAS  Google Scholar 

  • Blackman, L. D. et al. An introduction to zwitterionic polymer behavior and applications in solution and at surfaces. Chem. Soc. Rev. 48, 757–770 (2019).

    Article  CAS  Google Scholar 

  • Okamatsu, A. et al. Design and evaluation of folate-appended alpha-, beta-, and gamma-cyclodextrins having a caproic acid as a tumor selective antitumor drug carrier in vitro and in vivo. Biomacromolecules 14, 4420–4428 (2013).

    Article  CAS  Google Scholar 

  • Okamatsu, A. et al. Folate-appended beta-cyclodextrin as a promising tumor targeting carrier for antitumor drugs in vitro and in vivo. Bioconjugate Chem. 24, 724–733 (2013).

    Article  CAS  Google Scholar 

  • Hyun, H. et al. 700-nm zwitterionic near-infrared fluorophores for dual-channel image-guided surgery. Mol. Imaging Biol. 18, 52–61 (2016).

    Article  CAS  Google Scholar 

  • Shao, Q. & Jiang, S. Influence of charged groups on the properties of zwitterionic moieties: a molecular simulation study. J. Phys. Chem. B 118, 7630–7637 (2014).

    Article  CAS  Google Scholar 

  • Dwivedi, R. et al. Design of therapeutically improved analogue of the antimicrobial peptide, indolicidin, using a glycosylation strategy. Amino Acids 51, 1443–1460 (2019).

    Article  CAS  Google Scholar 

  • Xu, X. D. et al. In situ recognition of cell-surface glycans and targeted imaging of cancer cells. Sci. Rep. 3, 2679 (2013).

    Article  CAS  Google Scholar 

  • Kasashima, H. et al. Mouse model of colorectal cancer: orthotopic co-implantation of tumor and stroma cells in cecum and rectum. STAR Protoc. 2, 100297 (2021).

    Article  CAS  Google Scholar 

  • Gontijo, S. M. L. et al. Erlotinib/hydroxypropyl-beta-cyclodextrin inclusion complex: characterization and in vitro and in vivo evaluation. J. Incl. Phenom. Macrocycl. Chem. 83, 267–279 (2015).

    Article  CAS  Google Scholar 

  • Time Stamp:

    More from Nature Nanotechnology