Microplastic fragmentation by rotifers in aquatic ecosystems contributes to global nanoplastic pollution - Nature Nanotechnology

Microplastic fragmentation by rotifers in aquatic ecosystems contributes to global nanoplastic pollution – Nature Nanotechnology

Source Node: 2969972
  • Stubbins, A., Law, K. L., Muñoz, S. E., Bianchi, T. S. & Zhu, L. Plastics in the earth system. Science 373, 51–55 (2021).

    Article  CAS  Google Scholar 

  • Ross, P. S. et al. Pervasive distribution of polyester fibres in the Arctic Ocean is driven by Atlantic inputs. Nat. Commun. 12, 106 (2021).

    Article  CAS  Google Scholar 

  • Aves, A. R. et al. First evidence of microplastics in Antarctic snow. Cryosphere 16, 2127–2145 (2022).

    Article  Google Scholar 

  • Woodward, J., Li, J., Rothwell, J. & Hurley, R. Acute riverine microplastic contamination due to avoidable releases of untreated wastewater. Nat. Sustain. 4, 793–802 (2021).

    Article  Google Scholar 

  • Peng, X. et al. Microplastics contaminate the deepest part of the world’s ocean. Geochem. Perspect. Lett. 9, 1–5 (2018).

    Article  Google Scholar 

  • Santos, R. G., Machovsky-Capuska, G. E. & Andrades, R. Plastic ingestion as an evolutionary trap: toward a holistic understanding. Science 373, 56–60 (2021).

    Article  CAS  Google Scholar 

  • MacLeod, M., Arp, H. P. H., Tekman, M. B. & Jahnke, A. The global threat from plastic pollution. Science 373, 61–65 (2021).

    Article  CAS  Google Scholar 

  • Gigault, J. et al. Nanoplastics are neither microplastics nor engineered nanoparticles. Nat. Nanotechnol. 16, 501–507 (2021).

    Article  CAS  Google Scholar 

  • Vethaak, A. D. & Legler, J. Microplastics and human health. Science 371, 672–674 (2021).

    Article  CAS  Google Scholar 

  • Wagner, S. & Reemtsma, T. Things we know and don’t know about nanoplastic in the environment. Nat. Nanotechnol. 14, 300–301 (2019).

    Article  CAS  Google Scholar 

  • Gerritse, J., Leslie, H. A., Caroline, A., Devriese, L. I. & Vethaak, A. D. Fragmentation of plastic objects in a laboratory seawater microcosm. Sci. Rep. 10, 10945 (2020).

    Article  CAS  Google Scholar 

  • Dawson, A. L. et al. Turning microplastics into nanoplastics through digestive fragmentation by Antarctic krill. Nat. Commun. 9, 1001 (2018).

    Article  Google Scholar 

  • Wang, C., Zhao, J. & Xing, B. Environmental source, fate, and toxicity of microplastics. J. Hazard. Mater. 407, 124357 (2021).

    Article  CAS  Google Scholar 

  • Hewitt, D. P. & George, D. G. The population dynamics of Keratella cochlearis in a hypereutrophic tarn and the possible impact of predation by young roach. Hydrobiologia 147, 221–227 (1987).

    Article  Google Scholar 

  • Jeong, C. B. et al. Microplastic size-dependent toxicity, oxidative stress induction, and p-JNK and p-p38 activation in the monogonont rotifer (Brachionus koreanus). Environ. Sci. Technol. 50, 8849–8857 (2016).

    Article  CAS  Google Scholar 

  • Baer, A., Langdon, C., Mills, S., Schulz, C. & Hamre, K. Particle size preference, gut filling and evacuation rates of the rotifer Brachionus “Cayman” using polystyrene latex beads. Aquaculture 282, 75–82 (2008).

    Article  Google Scholar 

  • Stelzer, C. P., Riss, S. & Stadler, P. Genome size evolution at the speciation level: the cryptic species complex Brachionus plicatilis (Rotifera). BMC Evol. Biol. 11, 90 (2011).

    Article  Google Scholar 

  • Papakostas, S. et al. Integrative taxonomy recognizes evolutionary units despite widespread mitonuclear discordance: evidence from a rotifer cryptic species complex. Syst. Biol. 65, 508–524 (2016).

    Article  Google Scholar 

  • Gilbert, J. J. & Walsh, E. J. Brachionus calyciflorus is a species complex: mating behavior and genetic differentiation among four geographically isolated strains. Hydrobiologia 546, 257–265 (2005).

    Article  CAS  Google Scholar 

  • Drago, C. & Weithoff, G. Variable fitness response of two rotifer species exposed to microplastics particles: the role of food quantity and quality. Toxics 9, 305 (2021).

    Article  CAS  Google Scholar 

  • Fournier, S. B. et al. Nanopolystyrene translocation and fetal deposition after acute lung exposure during late-stage pregnancy. Part. Fibre Toxicol. 17, 55 (2020).

    Article  CAS  Google Scholar 

  • Kleinow, W. & Wratil, H. On the structure and function of the mastax of Brachionus plicatilis (Rotifera), a scanning electron microscope analysis. Zoomorphology 116, 169–177 (1996).

    Article  Google Scholar 

  • Klusemann, J., Kleinow, W. & Peters, W. The hard parts (trophi) of the rotifer mastax do contain chitin: evidence from studies on Brachionus plicatilis. Histochemistry 94, 277–283 (1990).

    Article  CAS  Google Scholar 

  • Cornillac, A., Wurdak, E. & Clément, P. Biology of Rotifers (Springer, 1983).

  • Garvey, C. J. et al. Molecular-scale understanding of the embrittlement in polyethylene ocean debris. Environ. Sci. Technol. 54, 11173–11181 (2020).

    Article  CAS  Google Scholar 

  • Liu, Z. et al. Quantifying the dynamics of polystyrene microplastics UV-aging process. Environ. Sci. Technol. Lett. 9, 50–56 (2022).

    Article  Google Scholar 

  • Huang, Z. et al. Influence of protein configuration on aggregation kinetics of nanoplastics in aquatic environment. Water Res. 219, 118522 (2022).

    Article  CAS  Google Scholar 

  • Iyer, N. & Rao, T. Responses of the predatory rotifer Asplanchna intermedia to prey species differing in vulnerability: laboratory and field studies. Freshw. Biol. 36, 521–533 (1996).

    Article  Google Scholar 

  • Yuan, W., Liu, X., Wang, W., Di, M. & Wang, J. Microplastic abundance, distribution and composition in water, sediments, and wild fish from Poyang Lake, China. Ecotoxicol. Environ. Saf. 170, 180–187 (2019).

    Article  CAS  Google Scholar 

  • Wang, J., Wu, J., Yu, Y., Wang, T. & Gong, C. The specific list, quantitative distribution and change of zooplankton in the season of spring and autumn in Poyang Lake. J. Lake Sci. 15, 345–352 (2003).

    Article  CAS  Google Scholar 

  • Gilbert, J. J. Food niches of planktonic rotifers: diversification and implications. Limnol. Oceanogr. 67, 2218–2251 (2022).

    Article  Google Scholar 

  • Han, M. et al. Distribution of microplastics in surface water of the lower Yellow River near estuary. Sci. Total Environ. 707, 135601 (2020).

    Article  CAS  Google Scholar 

  • Fan, Y. et al. Spatiotemporal dynamics of microplastics in an urban river network area. Water Res. 212, 118116 (2022).

    Article  CAS  Google Scholar 

  • Janakiraman, A., Naveed, M. S. & Altaff, K. Impact of domestic sewage pollution on rotifer abundance in Adyar estuary. Int. J. Environ. Sci. 3, 689–696 (2012).

    CAS  Google Scholar 

  • Cai, H., Chen, M., Du, F., Matthews, S. & Shi, H. Separation and enrichment of nanoplastics in environmental water samples via ultracentrifugation. Water Res. 203, 117509 (2021).

    Article  CAS  Google Scholar 

  • Nigamatzyanova, L. & Fakhrullin, R. Dark-field hyperspectral microscopy for label-free microplastics and nanoplastics detection and identification in vivo: a Caenorhabditis elegans study. Environ. Pollut. 271, 116337 (2021).

    Article  CAS  Google Scholar 

  • Stojicic, S., Zivkovic, S., Qian, W., Zhang, H. & Haapasalo, M. Tissue dissolution by sodium hypochlorite: effect of concentration, temperature, agitation, and surfactant. J. Endod. 36, 1558–1562 (2010).

    Article  Google Scholar 

  • Chopinet, L., Formosa, C., Rols, M. P., Duval, R. E. & Dague, E. Imaging living cells surface and quantifying its properties at high resolution using AFM in QI™ mode. Micron 48, 26–33 (2013).

    Article  CAS  Google Scholar 

  • de Vega, R. G. et al. Characterisation of microplastics and unicellular algae in seawater by targeting carbon via single particle and single cell ICP-MS. Anal. Chim. Acta 1174, 338737 (2021).

    Article  Google Scholar 

  • Podar, M. et al. Global prevalence and distribution of genes and microorganisms involved in mercury methylation. Sci. Adv. 1, e1500675 (2015).

    Article  Google Scholar 

  • Time Stamp:

    More from Nature Nanotechnology