Electrical switching of ferro-rotational order in nanometre-thick 1T-TaS2 crystals

Electrical switching of ferro-rotational order in nanometre-thick 1T-TaS2 crystals

Source Node: 2644894
  • Wadhawan, V. Introduction to Ferroic Materials 1st edn (CRC, 2000).

  • Cheong, S.-W., Talbayev, D., Kiryukhin, V. & Saxena, A. Broken symmetries, non-reciprocity, and multiferroicity. npj Quant. Mater. 3, 19 (2018).

    Article  Google Scholar 

  • Van Aken, B. B., Rivera, J.-P., Schmid, H. & Fiebig, M. Observation of ferrotoroidic domains. Nature 449, 702–705 (2007).

    Article  Google Scholar 

  • Spaldin, N. A., Fiebig, M. & Mostovoy, M. The toroidal moment in condensed-matter physics and its relation to the magnetoelectric effect. J. Phys. Condens. Matter 20, 434203 (2008).

    Article  Google Scholar 

  • Zimmermann, A. S., Meier, D. & Fiebig, M. Ferroic nature of magnetic toroidal order. Nat. Commun. 5, 4796 (2014).

    Article  CAS  Google Scholar 

  • Hlinka, J., Privratska, J., Ondrejkovic, P. & Janovec, V. Symmetry guide to ferroaxial transitions. Phys. Rev. Lett. 116, 177602 (2016).

    Article  CAS  Google Scholar 

  • Fiebig, M. Order! order!! Nat. Phys. 16, 9–10 (2020).

    Article  Google Scholar 

  • Gopalan, V. & Litvin, D. B. Rotation-reversal symmetries in crystals and handed structures. Nat. Mater. 10, 376–381 (2011).

    Article  CAS  Google Scholar 

  • Johnson, R. D. et al. Cu3Nb2O8: a multiferroic with chiral coupling to the crystal structure. Phys. Rev. Lett. 107, 137205 (2011).

    Article  CAS  Google Scholar 

  • Johnson, R. D. et al. Giant improper ferroelectricity in the ferroaxial magnet CaMn7O12. Phys. Rev. Lett. 108, 067201 (2012).

    Article  CAS  Google Scholar 

  • Jin, W. et al. Observation of a ferro-rotational order coupled with second-order nonlinear optical fields. Nat. Phys. 16, 42–46 (2020).

    Article  CAS  Google Scholar 

  • Luo, X. et al. Ultrafast modulations and detection of a ferro-rotational charge density wave using time-resolved electric quadrupole second harmonic generation. Phys. Rev. Lett. 127, 126401 (2021).

    Article  CAS  Google Scholar 

  • Hayashida, T. et al. Visualization of ferroaxial domains in an order–disorder type ferroaxial crystal. Nat. Commun. 11, 4582 (2020).

    Article  CAS  Google Scholar 

  • Hayashida, T. et al. Phase transition and domain formation in ferroaxial crystals. Phys. Rev. Mater. 5, 124409 (2021).

    Article  CAS  Google Scholar 

  • Cheong, S.-W., Lim, S., Du, K. & Huang, F.-T. Permutable SOS (symmetry operational similarity). npj Quant. Mater. 6, 58 (2021).

    Article  Google Scholar 

  • Naumov, I. I., Bellaiche, L. & Fu, H. Unusual phase transitions in ferroelectric nanodisks and nanorods. Nature 432, 737–740 (2004).

    Article  CAS  Google Scholar 

  • Damodaran, A. R. et al. Phase coexistence and electric-field control of toroidal order in oxide superlattices. Nat. Mater. 16, 1003–1009 (2017).

    Article  CAS  Google Scholar 

  • Fichera, B. T. et al. Second harmonic generation as a probe of broken mirror symmetry. Phys. Rev. B 101, 241106 (2020).

    Article  CAS  Google Scholar 

  • Sipos, B. et al. From Mott state to superconductivity in 1T-TaS2. Nat. Mater. 7, 960–965 (2008).

    Article  CAS  Google Scholar 

  • Stojchevska, L. et al. Ultrafast switching to a stable hidden quantum state in an electronic crystal. Science 344, 177–180 (2014).

    Article  CAS  Google Scholar 

  • Yoshida, M. et al. Controlling charge-density-wave states in nano-thick crystals of 1T-TaS2. Sci. Rep. 4, 7302 (2014).

    Article  CAS  Google Scholar 

  • Yu, Y. et al. Gate-tunable phase transitions in thin flakes of 1T-TaS2. Nat. Nanotechnol. 10, 270–276 (2015).

    Article  CAS  Google Scholar 

  • Yoshida, M., Suzuki, R., Zhang, Y., Nakano, M. & Iwasa, Y. Memristive phase switching in two-dimensional 1T-TaS2 crystals. Sci. Adv. 1, e1500606 (2015).

    Article  Google Scholar 

  • Cho, D. et al. Nanoscale manipulation of the Mott insulating state coupled to charge order in 1T-TaS2. Nat. Commun. 7, 10453 (2016).

    Article  CAS  Google Scholar 

  • Ma, L. et al. A metallic mosaic phase and the origin of Mott-insulating state in 1T-TaS2. Nat. Commun. 7, 10956 (2016).

    Article  CAS  Google Scholar 

  • Vaskivskyi, I. et al. Fast electronic resistance switching involving hidden charge density wave states. Nat. Commun. 7, 11442 (2016).

    Article  CAS  Google Scholar 

  • Qiao, S. et al. Mottness collapse in 1T-TaS2−xSex transition-metal dichalcogenide: an interplay between localized and itinerant orbitals. Phys. Rev. X 7, 041054 (2017).

    Google Scholar 

  • Fazekas, P. & Tosatti, E. Charge carrier localization in pure and doped 1T-TaS2. Physica B+C 99, 183–187 (1980).

    Article  CAS  Google Scholar 

  • Wilson, J., Salvo, F. D. & Mahajan, S. Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides. Adv. Phys. 24, 117–201 (1975).

    Article  CAS  Google Scholar 

  • Thomson, R. E., Burk, B., Zettl, A. & Clarke, J. Scanning tunneling microscopy of the charge-density-wave structure in 1T-TaS2. Phys. Rev. B 49, 16899–16916 (1994).

    Article  CAS  Google Scholar 

  • Zong, A. et al. Ultrafast manipulation of mirror domain walls in a charge density wave. Sci. Adv. 4, eaau5501 (2018).

    Article  CAS  Google Scholar 

  • Ishioka, J. et al. Chiral charge-density waves. Phys. Rev. Lett. 105, 176401 (2010).

    Article  CAS  Google Scholar 

  • Xu, S.-Y. et al. Spontaneous gyrotropic electronic order in a transition-metal dichalcogenide. Nature 578, 545–549 (2020).

    Article  CAS  Google Scholar 

  • Jiang, Y.-X. et al. Unconventional chiral charge order in kagome superconductor KV3Sb5. Nat. Mater. 20, 1353–1357 (2021).

    Article  CAS  Google Scholar 

  • Sung, S. H. et al. Two-dimensional charge order stabilized in clean polytype heterostructures. Nat. Commun. 13, 413 (2022).

    Article  CAS  Google Scholar 

  • Yang, H. F. et al. Visualization of chiral electronic structure and anomalous optical response in a material with chiral charge density waves. Phys. Rev. Lett. 129, 156401 (2022).

    Article  CAS  Google Scholar 

  • Song, X. et al. Atomic-scale visualization of chiral charge density wave superlattices and their reversible switching. Nat. Commun. 13, 1843 (2022).

    Article  CAS  Google Scholar 

  • Wu, X. L. & Lieber, C. M. Hexagonal domain-like charge density wave phase of TaS2 determined by scanning tunneling microscopy. Science 243, 1703–1705 (1989).

    Article  CAS  Google Scholar 

  • Spijkerman, A., de Boer, J. L., Meetsma, A., Wiegers, G. A. & van Smaalen, S. X-ray crystal-structure refinement of the nearly commensurate phase of 1T-TaS2 in (3 + 2)-dimensional superspace. Phys. Rev. B 56, 13757–13767 (1997).

    Article  CAS  Google Scholar 

  • Park, J. W., Cho, G. Y., Lee, J. & Yeom, H. W. Emergent honeycomb network of topological excitations in correlated charge density wave. Nat. Commun. 10, 4038 (2019).

    Article  Google Scholar 

  • Catalan, G., Seidel, J., Ramesh, R. & Scott, J. F. Domain wall nanoelectronics. Rev. Mod. Phys. 84, 119–156 (2012).

    Article  CAS  Google Scholar 

  • Dawber, M., Rabe, K. M. & Scott, J. F. Physics of thin-film ferroelectric oxides. Rev. Mod. Phys. 77, 1083–1130 (2005).

    Article  CAS  Google Scholar 

  • McGilly, L. J., Yudin, P., Feigl, L., Tagantsev, A. K. & Setter, N. Controlling domain wall motion in ferroelectric thin films. Nat. Nanotechnol. 10, 145–150 (2015).

    Article  CAS  Google Scholar 

  • Cho, D. et al. Correlated electronic states at domain walls of a Mott-charge-density-wave insulator 1T-TaS2. Nat. Commun. 8, 392 (2017).

    Article  Google Scholar 

  • Skolimowski, J., Gerasimenko, Y. & Žitko, R. Mottness collapse without metallization in the domain wall of the triangular-lattice Mott insulator 1T-TaS2. Phys. Rev. Lett. 122, 036802 (2019).

    Article  CAS  Google Scholar 

  • Park, J. W., Lee, J. & Yeom, H. W. Zoology of domain walls in quasi-2D correlated charge density wave of 1T-TaS2. npj Quant. Mater. 6, 32 (2021).

    Article  CAS  Google Scholar 

  • Ritschel, T. et al. Orbital textures and charge density waves in transition metal dichalcogenides. Nat. Phys. 11, 328–331 (2015).

    Article  CAS  Google Scholar 

  • Lee, S.-H., Goh, J. S. & Cho, D. Origin of the insulating phase and first-order metal–insulator transition in 1T-TaS2. Phys. Rev. Lett. 122, 106404 (2019).

    Article  CAS  Google Scholar 

  • Butler, C. J., Yoshida, M., Hanaguri, T. & Iwasa, Y. Mottness versus unit-cell doubling as the driver of the insulating state in 1T-TaS2. Nat. Commun. 11, 2477 (2020).

    Article  CAS  Google Scholar 

  • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  • Time Stamp:

    More from Nature Nanotechnology