Breaking through the basement membrane barrier to improve nanotherapeutic delivery to tumours – Nature Nanotechnology

Source Node: 2881817
  • Dewhirst, M. W. & Secomb, T. W. Transport of drugs from blood vessels to tumour tissue. Nat. Rev. Cancer 17, 738–750 (2017).

    Article  CAS  Google Scholar 

  • Blanco, E., Shen, H. & Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33, 941–951 (2015).

    Article  CAS  Google Scholar 

  • Wilhelm, S. et al. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 1, 16014 (2016).

    Article  CAS  Google Scholar 

  • Sindhwani, S. et al. The entry of nanoparticles into solid tumours. Nat. Mater. 19, 566–575 (2020).

    Article  CAS  Google Scholar 

  • Mitchell, M. J. et al. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 20, 101–124 (2021).

    Article  CAS  Google Scholar 

  • Wettschureck, N., Strilic, B. & Offermanns, S. Passing the vascular barrier: endothelial signaling processes controlling extravasation. Physiol. Rev. 99, 1467–1525 (2019).

    Article  CAS  Google Scholar 

  • Glassman, P. M. et al. Targeting drug delivery in the vascular system: focus on endothelium. Adv. Drug Deliv. Rev. 157, 96–117 (2020).

    Article  CAS  Google Scholar 

  • Setyawati, M. I., Tay, C. Y., Docter, D., Stauber, R. H. & Leong, D. T. Understanding and exploiting nanoparticles’ intimacy with the blood vessel and blood. Chem. Soc. Rev. 44, 8174–8199 (2015).

    Article  CAS  Google Scholar 

  • Cahill, P. A. & Redmond, E. M. Vascular endothelium—gatekeeper of vessel health. Atherosclerosis 248, 97–109 (2016).

    Article  CAS  Google Scholar 

  • Zhou, Q. et al. Enzyme-activatable polymer–drug conjugate augments tumour penetration and treatment efficacy. Nat. Nanotechnol. 14, 799–809 (2019).

    Article  CAS  Google Scholar 

  • El-Kareh, A. W. & Secomb, T. W. A mathematical model for comparison of bolus injection, continuous infusion, and liposomal delivery of doxorubicin to tumor cells. Neoplasia 2, 325–338 (2000).

    Article  CAS  Google Scholar 

  • Hendriks, B. S. et al. Multiscale kinetic modeling of liposomal doxorubicin delivery quantifies the role of tumor and drug-specific parameters in local delivery to tumors. CPT Pharmacomet. Syst. Pharmacol. 1, e15 (2012).

    Article  CAS  Google Scholar 

  • Harashima, H., Iida, S., Urakami, Y., Tsuchihashi, M. & Kiwada, H. Optimization of antitumor effect of liposomally encapsulated doxorubicin based on simulations by pharmacokinetic/pharmacodynamic modeling. J. Control. Release 61, 93–106 (1999).

    Article  CAS  Google Scholar 

  • Jayadev, R. & Sherwood, D. R. Basement membranes. Curr. Biol. 27, R207–R211 (2017).

    Article  CAS  Google Scholar 

  • Nikolova, G., Strilic, B. & Lammert, E. The vascular niche and its basement membrane. Trends Cell Biol. 17, 19–25 (2007).

    Article  CAS  Google Scholar 

  • Reuten, R. et al. Basement membrane stiffness determines metastases formation. Nat. Mater. 20, 892–903 (2021).

    Article  CAS  Google Scholar 

  • Rowe, R. G. & Weiss, S. J. Breaching the basement membrane: who, when and how? Trends Cell Biol. 18, 560–574 (2008).

    Article  CAS  Google Scholar 

  • Chaudhuri, O. et al. Extracellular matrix stiffness and composition jointly regulate the induction of malignant phenotypes in mammary epithelium. Nat. Mater. 13, 970–978 (2014).

    Article  CAS  Google Scholar 

  • Zhang, X. L. et al. The endothelial basement membrane acts as a checkpoint for entry of pathogenic T cells into the brain. J. Exp. Med. 217, e20191339 (2020).

    Article  CAS  Google Scholar 

  • Du, B. J. et al. Glomerular barrier behaves as an atomically precise bandpass filter in a sub-nanometre regime. Nat. Nanotechnol. 12, 1096–1102 (2017).

    Article  CAS  Google Scholar 

  • Baluk, P., Morikawa, S., Haskell, A., Mancuso, M. & McDonald, D. M. Abnormalities of basement membrane on blood vessels and endothelial sprouts in tumors. Am. J. Pathol. 163, 1801–1815 (2003).

    Article  Google Scholar 

  • Yuan, F. et al. Microvascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumor xenograft. Cancer Res. 54, 3352–3356 (1994).

    CAS  Google Scholar 

  • Yokoi, K. et al. Capillary-wall collagen as a biophysical marker of nanotherapeutic permeability into the tumor microenvironment. Cancer Res. 74, 4239–4246 (2014).

    Article  CAS  Google Scholar 

  • Miao, L. & Huang, L. Exploring the tumor microenvironment with nanoparticles. Cancer Treat. Res. 166, 193–226 (2015).

    Article  CAS  Google Scholar 

  • Wang, S. W., Liu, J., Goh, C. C., Ng, L. G. R. & Liu, B. NIR-II-excited intravital two-photon microscopy distinguishes deep cerebral and tumor vasculatures with an ultrabright NIR-I AIE luminogen. Adv. Mater. 31, 1904447 (2019).

    Article  CAS  Google Scholar 

  • Iliff, J. J. et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci. Transl. Med. 4, 147ra111 (2012).

    Article  Google Scholar 

  • Yu, X. et al. Immune modulation of liver sinusoidal endothelial cells by melittin nanoparticles suppresses liver metastasis. Nat. Commun. 10, 574 (2019).

    Article  CAS  Google Scholar 

  • Mikelis, C. M. et al. RhoA and ROCK mediate histamine-induced vascular leakage and anaphylactic shock. Nat. Commun. 6, 6725 (2015).

    Article  CAS  Google Scholar 

  • Bazzoni, G. & Dejana, E. Endothelial cell-to-cell junctions: molecular organization and role in vascular homeostasis. Physiol. Rev. 84, 869–901 (2004).

    Article  CAS  Google Scholar 

  • Mak, K. M. & Mei, R. Basement membrane type IV collagen and laminin: an overview of their biology and value as fibrosis biomarkers of liver disease. Anat. Rec. 300, 1371–1390 (2017).

    Article  CAS  Google Scholar 

  • Song, J. et al. Endothelial basement membrane laminin 511 contributes to endothelial junctional tightness and thereby inhibits leukocyte transmigration. Cell Rep. 18, 1256–1269 (2017).

    Article  CAS  Google Scholar 

  • Chang, J. L. & Chaudhuri, O. Beyond proteases: basement membrane mechanics and cancer invasion. J. Cell Biol. 218, 2456–2469 (2019).

    Article  Google Scholar 

  • Rayagiri, S. S. et al. Basal lamina remodeling at the skeletal muscle stem cell niche mediates stem cell self-renewal. Nat. Commun. 9, 1075 (2018).

    Article  Google Scholar 

  • Liotta, L. A. et al. Metastatic potential correlates with enzymatic degradation of basement-membrane collagen. Nature 284, 67–68 (1980).

    Article  CAS  Google Scholar 

  • Reymond, N., d’Agua, B. B. & Ridley, A. J. Crossing the endothelial barrier during metastasis. Nat. Rev. Cancer 13, 858–870 (2013).

    Article  CAS  Google Scholar 

  • Kelley, L. C., Lohmer, L. L., Hagedorn, E. J. & Sherwood, D. R. Traversing the basement membrane in vivo: a diversity of strategies. J. Cell Biol. 204, 291–302 (2014).

    Article  CAS  Google Scholar 

  • Zindel, J. et al. Primordial GATA6 macrophages function as extravascular platelets in sterile injury. Science 371, eabe0595 (2021).

    Article  CAS  Google Scholar 

  • Li, M. et al. Chemotaxis-driven delivery of nano-pathogenoids for complete eradication of tumors post-phototherapy. Nat. Commun. 11, 1126 (2020).

    Article  CAS  Google Scholar 

  • Wang, J. et al. Visualizing the function and fate of neutrophils in sterile injury and repair. Science 358, 111–116 (2017).

    Article  CAS  Google Scholar 

  • Harris, T. J. C. & Tepass, U. Adherens junctions: from molecules to morphogenesis. Nat. Rev. Mol. Cell Biol. 11, 502–514 (2010).

    Article  CAS  Google Scholar 

  • Chauhan, V. P. et al. Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner. Nat. Nanotechnol. 7, 383–388 (2012).

    Article  CAS  Google Scholar 

  • Orsenigo, F. et al. Phosphorylation of VE-cadherin is modulated by haemodynamic forces and contributes to the regulation of vascular permeability in vivo. Nat. Commun. 3, 1208 (2012).

    Article  Google Scholar 

  • Wessel, F. et al. Leukocyte extravasation and vascular permeability are each controlled in vivo by different tyrosine residues of VE-cadherin. Nat. Immunol. 15, 223–230 (2014).

    Article  CAS  Google Scholar 

  • Paul, R. et al. Src deficiency or blockade of Src activity in mice provides cerebral protection following stroke. Nat. Med. 7, 222–227 (2001).

    Article  CAS  Google Scholar 

  • Miller, M. A. et al. Radiation therapy primes tumors for nanotherapeutic delivery via macrophage-mediated vascular bursts. Sci. Transl. Med. 9, eaal0225 (2017).

    Article  Google Scholar 

  • Matsumoto, Y. et al. Vascular bursts enhance permeability of tumour blood vessels and improve nanoparticle delivery. Nat. Nanotechnol. 11, 533–538 (2016).

    Article  CAS  Google Scholar 

  • Igarashi, K. et al. Vascular bursts act as a versatile tumor vessel permeation route for blood-borne particles and cells. Small 17, 2103751 (2021).

    Article  CAS  Google Scholar 

  • Naumenko, V. A. et al. Extravasating neutrophils open vascular barrier and improve liposomes delivery to tumors. ACS Nano 13, 12599–12612 (2019).

    Article  CAS  Google Scholar 

  • Yeh, Y. T. et al. Three-dimensional forces exerted by leukocytes and vascular endothelial cells dynamically facilitate diapedesis. Proc. Natl Acad. Sci. USA 115, 133–138 (2018).

    Article  CAS  Google Scholar 

  • Pittet, M. J., Garris, C. S., Arlauckas, S. P. & Weissleder, R. Recording the wild lives of immune cells. Sci. Immunol. 3, eaaq0491 (2018).

    Article  Google Scholar 

  • Combes, F., Meyer, E. & Sanders, N. N. Immune cells as tumor drug delivery vehicles. J. Control. Release 327, 70–87 (2020).

    Article  CAS  Google Scholar 

  • Kurz, A. R. M. et al. MST1-dependent vesicle trafficking regulates neutrophil transmigration through the vascular basement membrane. J. Clin. Invest. 126, 4125–4139 (2016).

    Article  Google Scholar 

  • Sreeramkumar, V. et al. Neutrophils scan for activated platelets to initiate inflammation. Science 346, 1234–1238 (2014).

    Article  CAS  Google Scholar 

  • Franco, A. T., Corken, A. & Ware, J. Platelets at the interface of thrombosis, inflammation, and cancer. Blood 126, 582–588 (2015).

    Article  CAS  Google Scholar 

  • Lv, Y. L. et al. Near-infrared light-triggered platelet arsenal for combined photothermal–immunotherapy against cancer. Sci. Adv. 7, eabd7614 (2021).

    Article  CAS  Google Scholar 

  • Miller, M. A., Askevold, B., Yang, K. S., Kohler, R. H. & Weissleder, R. Platinum compounds for high-resolution in vivo cancer imaging. ChemMedChem 9, 1131–1135 (2014).

    Article  CAS  Google Scholar 

  • Time Stamp:

    More from Nature Nanotechnology