Highly stable, antiviral, antibacterial cotton textiles via molecular engineering

Highly stable, antiviral, antibacterial cotton textiles via molecular engineering

Source Node: 1850114
  • Kozel, T. R. & Burnham-Marusich, A. R. Point-of-care testing for infectious diseases: past, present, and future. J. Clin. Microbiol. 55, 2313–2320 (2017).

    Article  CAS  Google Scholar 

  • Sohrabi, C. et al. World Health Organization declares global emergency: a review of the 2019 novel coronavirus (COVID-19). Int. J. Surg. 76, 71–76 (2020).

    Article  Google Scholar 

  • Amanat, F. & Krammer, F. SARS-CoV-2 vaccines: status report. Immunity 52, 583–589 (2020).

    Article  CAS  Google Scholar 

  • Sidwell, R. W., Dixon, G. J. & Mcneil, E. Quantitative studies on fabrics as disseminators of viruses: I. Persistence of vaccinia virus on cotton and wool fabrics. Appl. Environ. Microbiol. 14, 55–59 (1966).

    Article  CAS  Google Scholar 

  • Dixon, G. J., Sidwell, R. W. & Mcneil, E. Quantitative studies on fabrics as disseminators of viruses: II. Persistence of poliomyelitis virus on cotton and wool fabrics. Appl. Environ. Microbiol. 14, 183–188 (1966).

    Article  CAS  Google Scholar 

  • Sidwell, R. W., Dixon, G. J., Westbrook, L. & Forziati, F. H. Quantitative studies on fabrics as disseminators of viruses: IV. Virus transmission by dry contact of fabrics. Appl. Environ. Microbiol. 19, 950–954 (1970).

    Article  CAS  Google Scholar 

  • Gerba, C. P. & Kennedy, D. Enteric virus survival during household laundering and impact of disinfection with sodium hypochlorite. Appl. Environ. Microbiol. 73, 4425–4428 (2007).

    Article  CAS  Google Scholar 

  • Katoh, I. et al. Potential risk of virus carryover by fabrics of personal protective gowns. Front. Public Health 7, 121 (2019).

    Article  Google Scholar 

  • Ansell, M. P. & Mwaikambo, L. Y. in Handbook of Textile Fibre Structure Vol. 2 (eds Eichhorn, S. J. et al.) 62–94 (Woodhead, 2009).

  • Hu, L. et al. Stretchable, porous, and conductive energy textiles. Nano Lett. 10, 708–714 (2010).

    Article  CAS  Google Scholar 

  • Lei, L., Li, S. & Gu, Y. Cellulose synthase complexes: composition and regulation. Front. Plant Sci. 3, 75 (2012).

    Article  CAS  Google Scholar 

  • Turner, S. & Kumar, M. Cellulose synthase complex organization and cellulose microfibril structure. Philos. Trans. A Math. Phys. Eng. Sci. 376, 20170048 (2018).

  • Vasilev, K. Nanoengineered antibacterial coatings and materials: a perspective. Coatings 9, 654 (2019).

    Article  CAS  Google Scholar 

  • Zhou, J., Hu, Z., Zabihi, F., Chen, Z. & Zhu, M. Progress and perspective of antiviral protective material. Adv. Fiber Mater. 2, 123–139 (2020).

    Article  CAS  Google Scholar 

  • Cloutier, M., Mantovani, D. & Rosei, F. Antibacterial coatings: challenges, perspectives, and opportunities. Trends Biotechnol. 33, 637–652 (2015).

    Article  CAS  Google Scholar 

  • Karim, N. et al. Sustainable personal protective clothing for healthcare applications: a review. ACS Nano 14, 12313–12340 (2020).

    Article  Google Scholar 

  • Balasubramaniam, B. et al. Antibacterial and antiviral functional materials: chemistry and biological activity toward tackling COVID-19-like pandemics. ACS Pharmacol. Transl. Sci. 4, 8–54 (2021).

    Article  CAS  Google Scholar 

  • Hassabo, A. G., El-Naggar, M. E., Mohamed, A. L. & Hebeish, A. A. Development of multifunctional modified cotton fabric with tri-component nanoparticles of silver, copper and zinc oxide. Carbohydr. Polym. 210, 144–156 (2019).

    Article  CAS  Google Scholar 

  • Suryaprabha, T. & Sethuraman, M. G. Fabrication of copper-based superhydrophobic self-cleaning antibacterial coating over cotton fabric. Cellulose 24, 395–407 (2016).

    Article  Google Scholar 

  • Xu, Q. et al. Preparation of copper nanoparticles coated cotton fabrics with durable antibacterial properties. Fibers Polym. 19, 1004–1013 (2018).

    Article  CAS  Google Scholar 

  • Ali, A. et al. Copper coated multifunctional cotton fabrics. J. Ind. Text. 48, 448–464 (2017).

    Article  Google Scholar 

  • Anita, S., Ramachandran, T., Rajendran, R., Koushik, C. V. & Mahalakshmi, M. A study of the antimicrobial property of encapsulated copper oxide nanoparticles on cotton fabric. Text. Res. J. 81, 1081–1088 (2011).

    Article  CAS  Google Scholar 

  • Galdiero, S. et al. Silver nanoparticles as potential antiviral agents. Molecules 16, 8894–8918 (2011).

    Article  CAS  Google Scholar 

  • Monette, A. & Mouland, A. J. Zinc and copper ions differentially regulate prion-like phase separation dynamics of pan-virus nucleocapsid biomolecular condensates. Viruses 12, 1179 (2020).

  • Tavakoli, A. & Hashemzadeh, M. S. Inhibition of herpes simplex virus type 1 by copper oxide nanoparticles. J. Virological Methods 275, 113688 (2020).

    Article  CAS  Google Scholar 

  • Fang, L. et al. Impact of cell wall structure on the behavior of bacterial cells in the binding of copper and cadmium. Colloids Surf. A Physicochem. Eng. Asp. 347, 50–55 (2009).

    Article  CAS  Google Scholar 

  • Grass, G., Rensing, C. & Solioz, M. Metallic copper as an antimicrobial surface. Appl. Environ. Microbiol. 77, 1541–1547 (2011).

    Article  CAS  Google Scholar 

  • Warnes, S. L., Caves, V. & Keevil, C. W. Mechanism of copper surface toxicity in Escherichia coli O157:H7 and Salmonella involves immediate membrane depolarization followed by slower rate of DNA destruction which differs from that observed for Gram-positive bacteria. Environ. Microbiol. 14, 1730–1743 (2012).

    Article  CAS  Google Scholar 

  • Lemire, J. A., Harrison, J. J. & Turner, R. J. Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat. Rev. Microbiol. 11, 371–384 (2013).

    Article  CAS  Google Scholar 

  • Isogai, A. NMR analysis of cellulose dissolved in aqueous NaOH solutions. Cellulose 4, 99–107 (1997).

    Article  CAS  Google Scholar 

  • Philipp, B., Kunze, J. & Fink, H. P. in The Structures of Cellulose Vol. 340 (ed. Atalla, R. H.) Ch. 1 (American Chemical Society, 1987).

  • Gaspar, D. et al. Nanocrystalline cellulose applied simultaneously as the gate dielectric and the substrate in flexible field effect transistors. Nanotechnology 25, 094008 (2014).

    Article  CAS  Google Scholar 

  • Li, T. et al. Cellulose ionic conductors with high differential thermal voltage for low-grade heat harvesting. Nat. Mater. 18, 608–613 (2019).

    Article  CAS  Google Scholar 

  • Ogawa, Y. et al. Formation and stability of cellulose–copper–NaOH crystalline complex. Cellulose 21, 999–1006 (2013).

    Article  Google Scholar 

  • Yang, C. et al. Copper-coordinated cellulose ion conductors for solid-state batteries. Nature 598, 590–596 (2021).

    Article  Google Scholar 

  • Rupp, H. & Weser, U. X-ray photoelectron spectroscopy of copper(II), copper(I), and mixed valence systems. Bioinorg. Chem. 6, 45–59 (1976).

    Article  CAS  Google Scholar 

  • Biesinger, M. C. Advanced analysis of copper X-ray photoelectron spectra. Surf. Interface Anal. 49, 1325–1334 (2017).

    Article  CAS  Google Scholar 

  • Lu, Q., Gao, F. & Komarneni, S. Cellulose-directed growth of selenium nanobelts in solution. Chem. Mater. 18, 159–163 (2006).

    Article  CAS  Google Scholar 

  • Zhang, D. Y. et al. Microwave-assisted synthesis of PdNPs by cellulose solution to prepare 3D porous microspheres applied on dyes discoloration. Carbohydr. Polym. 247, 116569 (2020).

    Article  CAS  Google Scholar 

  • Creager, A. N. The Life of a Virus: Tobacco Mosaic Virus as an Experimental Model, 1930–1965 (University of Chicago Press, 2002).

  • Scholthof, K. B. Tobacco mosaic virus: a model system for plant biology. Annu. Rev. Phytopathol. 42, 13–34 (2004).

    Article  CAS  Google Scholar 

  • Caspar, D. L. D. in Advances in Protein Chemistry Vol. 18 (eds Anfinsen, C. B. et al.) 37–121 (Academic Press, 1964).

  • Noyce, J. O., Michels, H. & Keevil, C. W. Inactivation of influenza A virus on copper versus stainless steel surfaces. Appl. Environ. Microbiol. 73, 2748–2750 (2007).

    Article  CAS  Google Scholar 

  • Borkow, G., Lara, H. H., Covington, C. Y., Nyamathi, A. & Gabbay, J. Deactivation of human immunodeficiency virus type 1 in medium by copper oxide-containing filters. Antimicrob. Agents Chemother. 52, 518–525 (2008).

    Article  CAS  Google Scholar 

  • Warnes, S. L. & Keevil, C. W. Inactivation of norovirus on dry copper alloy surfaces. PLoS ONE 8, e75017 (2013).

    Article  CAS  Google Scholar 

  • Knill, C. J. & Kennedy, J. F. Degradation of cellulose under alkaline conditions. Carbohydr. Polym. 51, 281–300 (2003).

    Article  CAS  Google Scholar 

  • Shao, C. et al. Mechanism for the depolymerization of cellulose under alkaline conditions. J. Mol. Modeling 24, 124 (2018).

    Article  Google Scholar 

  • Hearle, J. W. S. & Sparrow, J. T. Further studies of the fractography of cotton fibers. Text. Res. J. 49, 268–282 (1979).

    Article  Google Scholar 

  • Hearle, J. W. S. in Fiber Fracture (eds Elices, M. & Llorca, J.) 57–71 (Elsevier, 2002).

  • Mia, R. et al. Review on various types of pollution problem in textile dyeing & printing industries of Bangladesh and recommandation for mitigation. J. Tex. Eng. Fash. Technol. 5, 220–226 (2019).

  • Lellis, B., Fávaro-Polonio, C. Z., Pamphile, J. A. & Polonio, J. C. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol. Res. Innov. 3, 275–290 (2019).

    Article  Google Scholar 

  • Leshchev, D. et al. The Inner Shell Spectroscopy beamline at NSLS-II: a facility for in situ and operando X-ray absorption spectroscopy for materials research. J. Synchrotron Radiat. 29, 1095–1106 (2022).

    Article  CAS  Google Scholar 

  • Ressler, T. WinXAS: a program for X-ray absorption spectroscopy data analysis under MS-Windows. J. Synchrotron Radiat. 5, 118–122 (1998).

  • Padmanabhan, M. S., Kramer, S. R., Wang, X. & Culver, J. N. Tobacco mosaic virus replicase-auxin/indole acetic acid protein interactions: reprogramming the auxin response pathway to enhance virus infection. J. Virol. 82, 2477–2485 (2008).

    Article  CAS  Google Scholar 

  • Jalily, P. H. et al. Mechanisms of action of novel influenza A/M2 viroporin inhibitors derived from hexamethylene amiloride. Mol. Pharmacol. 90, 80–95 (2016).

    Article  CAS  Google Scholar 

  • Time Stamp:

    More from Nature Nanotechnology