Cholesterol modulates the physiological response to nanoparticles by changing the composition of protein corona - Nature Nanotechnology

Cholesterol modulates the physiological response to nanoparticles by changing the composition of protein corona – Nature Nanotechnology

Source Node: 2803730
  • Quesada-Gonzalez, D. & Merkoci, A. Nanomaterial-based devices for point-of-care diagnostic applications. Chem. Soc. Rev. 47, 4697–4709 (2018).

    Article  CAS  Google Scholar 

  • Irvine, D. J. & Dane, E. L. Enhancing cancer immunotherapy with nanomedicine. Nat. Rev. Immunol. 20, 321–334 (2020).

    Article  CAS  Google Scholar 

  • Stater, E. P., Sonay, A. Y., Hart, C. & Grimm, J. The ancillary effects of nanoparticles and their implications for nanomedicine. Nat. Nanotechnol. 16, 1180–1194 (2021).

    Article  CAS  Google Scholar 

  • Guerrini, G., Magrì, D., Gioria, S., Medaglini, D. & Calzolai, L. Characterization of nanoparticles-based vaccines for COVID-19. Nat. Nanotechnol. 17, 570–576 (2022).

    Article  CAS  Google Scholar 

  • Gadekar, V. et al. Nanomedicines accessible in the market for clinical interventions. J. Control. Release 330, 372–397 (2021).

    Article  CAS  Google Scholar 

  • Thi, T. T. H. et al. Lipid-based nanoparticles in the clinic and clinical trials: from cancer nanomedicine to COVID-19 vaccines. Vaccines 9, 359 (2021).

    Article  CAS  Google Scholar 

  • Monopoli, M. P., Åberg, C., Salvati, A. & Dawson, K. A. Biomolecular coronas provide the biological identity of nanosized materials. Nat. Nanotechnol. 7, 779–786 (2012).

    Article  CAS  Google Scholar 

  • Ren, J. et al. Chemical and biophysical signatures of the protein corona in nanomedicine. J. Am. Chem. Soc. 144, 9184–9205 (2022).

    Article  CAS  Google Scholar 

  • Latreille, P.-L. et al. Scratching the surface of the protein corona: challenging measurements and controversies. ACS Nano 16, 1689–1707 (2022).

    Article  CAS  Google Scholar 

  • Li, M. et al. Nanoparticle elasticity affects systemic circulation lifetime by modulating adsorption of apolipoprotein A-I in corona formation. Nat. Commun. 13, 4137 (2022).

    Article  CAS  Google Scholar 

  • Kamaly, N. Nanoparticle protein corona evolution: from biological impact to biomarker discovery. Nanoscale 14, 1606–1620 (2022).

    Article  CAS  Google Scholar 

  • Ju, Y. et al. Person-specific biomolecular coronas modulate nanoparticle interactions with immune cells in human blood. ACS Nano 14, 15723–15737 (2020).

    Article  CAS  Google Scholar 

  • Hajipour, M. J., Laurent, S., Aghaie, A., Rezaee, F. & Mahmoudi, M. Personalized protein coronas: a ‘key’ factor at the nano-bio interface. Biomater. Sci. 2, 1210–1221 (2014).

    Article  CAS  Google Scholar 

  • Shannahan, J. H. et al. From the cover: disease-induced disparities in formation of the nanoparticle-biocorona and the toxicological consequences. Toxicol. Sci. 152, 406–416 (2016).

    Article  CAS  Google Scholar 

  • Ren, J. et al. Precision nanomedicine development based on specific opsonization of human cancer patient-personalized protein coronas. Nano Lett. 19, 4692–4701 (2019).

    Article  CAS  Google Scholar 

  • Lazarovits, J. et al. Synthesis of patient-specific nanomaterials. Nano Lett. 19, 116–123 (2019).

    Article  CAS  Google Scholar 

  • Di Santo, R. et al. Personalized graphene oxide-protein corona in the human plasma of pancreatic cancer patients. Front. Bioeng. Biotechnol. 8, 491 (2020).

    Article  Google Scholar 

  • Chetwynd, A. J. & Lynch, I. The rise of the nanomaterial metabolite corona, and emergence of the complete corona. Environ. Sci. Nano 7, 1041–1060 (2020).

    Article  CAS  Google Scholar 

  • Raesch, S. S. et al. Proteomic and lipidomic analysis of nanoparticle corona upon contact with lung surfactant reveals differences in protein, but not lipid composition. ACS Nano 9, 11872–11885 (2015).

    Article  CAS  Google Scholar 

  • Braccia, C. et al. The lipid composition of few layers graphene and graphene oxide biomolecular corona. Carbon 185, 591–598 (2021).

    Article  CAS  Google Scholar 

  • Liu, K., Salvati, A. & Sabirsh, A. Physiology, pathology and the biomolecular corona: the confounding factors in nanomedicine design. Nanoscale 14, 2136–2154 (2022).

    Article  CAS  Google Scholar 

  • Kobos, L. M. et al. An integrative proteomic/lipidomic analysis of the gold nanoparticle biocorona in healthy and obese conditions. Appl. Vitr. Toxicol. 5, 150–166 (2019).

    Article  CAS  Google Scholar 

  • Lima, T., Bernfur, K., Vilanova, M. & Cedervall, T. Understanding the lipid and protein corona formation on different sized polymeric nanoparticles. Sci. Rep. 10, 1129 (2020).

    Article  CAS  Google Scholar 

  • Tavakol, M. et al. Disease-related metabolites affect protein-nanoparticle interactions. Nanoscale 10, 7108–7115 (2018).

    Article  CAS  Google Scholar 

  • Luo, J., Yang, H. & Song, B. L. Mechanisms and regulation of cholesterol homeostasis. Nat. Rev. Mol. Cell Biol. 21, 225–245 (2020).

    Article  CAS  Google Scholar 

  • Civeira, F., Arca, M., Cenarro, A. & Hegele, R. A. A mechanism-based operational definition and classification of hypercholesterolemia. J. Clin. Lipidol. 16, 813–821 (2022).

    Article  Google Scholar 

  • Kim, S. H. et al. Understanding the biomolecular coronas of high-density lipoproteins on pegylated Au nanoparticles: implication for lipid corona formation in the blood. ACS Appl. Nano Mater. 5, 2018–2028 (2022).

    Article  CAS  Google Scholar 

  • Kim, H., Kumar, S., Kang, D. W., Jo, H. & Park, J. H. Affinity-driven design of cargo-switching nanoparticles to leverage a cholesterol-rich microenvironment for atherosclerosis therapy. ACS Nano 14, 6519–6531 (2020).

    Article  CAS  Google Scholar 

  • Fu, Q., Yu, L., Wang, Y., Li, P. & Song, J. Biomarker-responsive nanosystems for chronic disease theranostics. Adv. Funct. Mater. 33, 2206300 (2023).

    Article  CAS  Google Scholar 

  • Kim, K. R., Kim, J., Back, J. H., Lee, J. E. & Ahn, D. R. Cholesterol-mediated seeding of protein corona on dna nanostructures for targeted delivery of oligonucleotide therapeutics to treat liver fibrosis. ACS Nano 16, 7331–7343 (2022).

    Article  CAS  Google Scholar 

  • Dreaden, E. C., Alkilany, A. M., Huang, X., Murphy, C. J. & El-Sayed, M. A. The golden age: gold nanoparticles for biomedicine. Chem. Soc. Rev. 41, 2740–2779 (2012).

    Article  CAS  Google Scholar 

  • Kim, S. E. et al. Ultrasmall nanoparticles induce ferroptosis in nutrient-deprived cancer cells and suppress tumour growth. Nat. Nanotechnol. 11, 977–985 (2016).

    Article  CAS  Google Scholar 

  • Ke, P. C., Lin, S., Parak, W. J., Davis, T. P. & Caruso, F. A decade of the protein corona. ACS Nano 11, 11773–11776 (2017).

    Article  CAS  Google Scholar 

  • Xiao, Q. et al. The effects of protein corona on in vivo fate of nanocarriers. Adv. Drug Deliv. Rev. 186, 114356 (2022).

    Article  CAS  Google Scholar 

  • Blanco, E., Shen, H. & Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33, 941–951 (2015).

    Article  CAS  Google Scholar 

  • Macia, E. et al. Dynasore, a cell-permeable inhibitor of dynamin. Dev. Cell 10, 839–850 (2006).

    Article  CAS  Google Scholar 

  • Francia, V. et al. Corona composition can affect the mechanisms cells use to internalize nanoparticles. ACS Nano 13, 11107–11121 (2019).

    Article  CAS  Google Scholar 

  • Lara, S. et al. Identification of receptor binding to the biomolecular corona of nanoparticles. ACS Nano 11, 1884–1893 (2017).

    Article  CAS  Google Scholar 

  • Ngo, W. et al. Identifying cell receptors for the nanoparticle protein corona using genome screens. Nat. Chem. Biol. 18, 1023–1031 (2022).

    Article  CAS  Google Scholar 

  • Benetti, F., Bregoli, L., Olivato, I. & Sabbioni, E. Effects of metal (loid)-based nanomaterials on essential element homeostasis: the central role of nanometallomics for nanotoxicology. Metallomics 6, 729–747 (2014).

    Article  CAS  Google Scholar 

  • Ashkarran, A. A. et al. Measurements of heterogeneity in proteomics analysis of the nanoparticle protein corona across core facilities. Nat. Commun. 13, 6610 (2022).

    Article  CAS  Google Scholar 

  • Sheibani, S. et al. Nanoscale characterization of the biomolecular corona by cryo-electron microscopy, cryo-electron tomography, and image simulation. Nat. Commun. 12, 573 (2021).

    Article  CAS  Google Scholar 

  • Shevchenko, A., Tomas, H., Havlis, J., Olsen, J. V. & Mann, M. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat. Protoc. 1, 2856–2860 (2006).

    Article  CAS  Google Scholar 

  • Cao, Z. T. et al. Protein binding affinity of polymeric nanoparticles as a direct indicator of their pharmacokinetics. ACS Nano 14, 3563–3575 (2020).

    Article  CAS  Google Scholar 

  • Hess, B. P-LINCS: a parallel linear constraint solver for molecular simulation. J. Chem. Theory Comput. 4, 116–122 (2008).

    Article  CAS  Google Scholar 

  • Time Stamp:

    More from Nature Nanotechnology