Breakdown of the Nernst–Einstein relation in carbon nanotube porins

Breakdown of the Nernst–Einstein relation in carbon nanotube porins

Source Node: 1854254
  • Nernst, W. Zur kinetik der in lösung befindlichen körper (On the kinetics of bodies in solution). Zeit Phys. Chem. 2, 613–637 (1888).

    Article  Google Scholar 

  • Einstein, A. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen (On the motion of small particels suspended in liquids at rest required by the molecular-kinetic theory of heat). Ann. Phys. 4, 549–560 (1905).

    Article  Google Scholar 

  • Plawsky, J. L. in Transport Phenomena Fundamentals 4th edn (eds Heinemann, H. & Speight, J. G.) Ch. 3 (CRC Press, 2020).

  • Weiss, T. F. Cellular Biophysics: Volume 1: Transport (MIT Press, 1996).

  • Kirby, B. J. in Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices Ch. 11 (Cambridge Univ. Press, 2010).

  • Faucher, S. et al. Critical knowledge gaps in mass transport through single-digit nanopores: a review and perspective. J. Phys. Chem. C 123, 21309–21326 (2019).

    Article  CAS  Google Scholar 

  • Daiguji, H., Yang, P. & Majumdar, A. Ion transport in nanofluidic channels. Nano Lett. 4, 137–142 (2004).

    Article  CAS  Google Scholar 

  • Lee, C. et al. Large apparent electric size of solid-state nanopores due to spatially extended surface conduction. Nano Lett. 12, 4037–4044 (2012).

    Article  CAS  Google Scholar 

  • Lin, C.-Y., Combs, C., Su, Y.-S., Yeh, L.-H. & Siwy, Z. S. Rectification of concentration polarization in mesopores leads to high conductance ionic diodes and high performance osmotic power. J. Am. Chem. Soc. 141, 3691–3698 (2019).

    Article  CAS  Google Scholar 

  • Dechadilok, P. & Deen, W. M. Hindrance factors for diffusion and convection in pores. Ind. Eng. Chem. Res. 45, 6953–6959 (2006).

    Article  CAS  Google Scholar 

  • Renkin, E. M. Filtration, diffusion, and molecular sieving through porous cellulose membranes. J. Gen. Physiol. 38, 225–243 (1954).

    CAS  Google Scholar 

  • Cheng, C. et al. Ion transport in complex layered graphene-based membranes with tuneable interlayer spacing. Sci. Adv. 2, e1501272 (2016).

    Article  Google Scholar 

  • Bason, S., Kaufman, Y. & Freger, V. Analysis of ion transport in nanofiltration using phenomenological coefficients and structural characteristics. J. Phys. Chem. B 114, 3510–3517 (2010).

    Article  CAS  Google Scholar 

  • Wu, J., Gerstandt, K., Zhang, H., Liu, J. & Hinds, B. J. Electrophoretically induced aqueous flow through single-walled carbon nanotube membranes. Nat. Nanotechnol. 7, 133–139 (2012).

    Article  CAS  Google Scholar 

  • Choi, W. et al. Diameter-dependent ion transport through the interior of isolated single-walled carbon nanotubes. Nat. Commun. 4, 2397 (2013).

    Article  Google Scholar 

  • Fornasiero, F. et al. Ion exclusion by sub-2-nm carbon nanotube pores. Proc. Natl Acad. Sci. USA 105, 17250–17255 (2008).

    Article  CAS  Google Scholar 

  • Esfandiar, A. et al. Size effect in ion transport through angstrom-scale slits. Science 358, 511–513 (2017).

    Article  CAS  Google Scholar 

  • Pang, P., He, J., Park, J. H., Krstić, P. S. & Lindsay, S. Origin of giant ionic currents in carbon nanotube channels. ACS Nano 5, 7277–7283 (2011).

    Article  CAS  Google Scholar 

  • Tunuguntla, R. H. et al. Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins. Science 357, 792–796 (2017).

    Article  CAS  Google Scholar 

  • Venema, K., Gibrat, R., Grouzis, J.-P. & Grignon, C. Quantitative measurement of cationic fluxes, selectivity and membrane potential using liposomes multilabelled with fluorescent probes. Biochim. Biophys. Acta Biomembr. 1146, 87–96 (1993).

    Article  CAS  Google Scholar 

  • Lokesh, M., Youn, S. K. & Park, H. G. Osmotic transport across surface functionalized carbon nanotube membrane. Nano Lett. 18, 6679–6685 (2018).

    Article  CAS  Google Scholar 

  • Yao, Y.-C. et al. Strong electroosmotic coupling dominates ion conductance of 1.5 nm diameter carbon nanotube porins. ACS Nano 13, 12851–12859 (2019).

    Article  CAS  Google Scholar 

  • Li, Z. et al. Strong differential monovalent anion selectivity in narrow diameter carbon nanotube porins. ACS Nano 14, 6269–6275 (2020).

    Article  CAS  Google Scholar 

  • Haynes, W. M., Lide, D. R. & Bruno, T. J. (eds) CRC Handbook of Chemistry and Physics 97th edn, 75–76 (CRC Press, 2016).

  • Nightingale, E. Jr Phenomenological theory of ion solvation. Effective radii of hydrated ions. J. Phys. Chem. 63, 1381–1387 (1959).

    Article  CAS  Google Scholar 

  • Misra, R. P. & Blankschtein, D. Insights on the role of many-body polarization effects in the wetting of graphitic surfaces by water. J. Phys. Chem. C 121, 28166–28179 (2017).

    Article  CAS  Google Scholar 

  • Misra, R. P. & Blankschtein, D. Uncovering a universal molecular mechanism of salt ion adsorption at solid/water interfaces. Langmuir 37, 722–733 (2021).

    Article  CAS  Google Scholar 

  • Lamoureux, G. & Roux, B. Modeling induced polarization with classical Drude oscillators: theory and molecular dynamics simulation algorithm. J. Chem. Phys. 119, 3025–3039 (2003).

    Article  CAS  Google Scholar 

  • Hummer, G., Rasaiah, J. C. & Noworyta, J. P. Water conduction through the hydrophobic channel of a carbon nanotube. Nature 414, 188–190 (2001).

    Article  CAS  Google Scholar 

  • Corry, B. Designing carbon nanotube membranes for efficient water desalination. J. Phys. Chem. B 112, 1427–1434 (2008).

    Article  CAS  Google Scholar 

  • Corry, B. Water and ion transport through functionalised carbon nanotubes: implications for desalination technology. Energy Environ. Sci. 4, 751–759 (2011).

    Article  CAS  Google Scholar 

  • Mondal, S. & Bagchi, B. Water in carbon nanotubes: pronounced anisotropy in dielectric dispersion and its microscopic origin. J. Phys. Chem. Lett. 10, 6287–6292 (2019).

    Article  CAS  Google Scholar 

  • Loche, P., Ayaz, C., Schlaich, A., Uematsu, Y. & Netz, R. R. Giant axial dielectric response in water-filled nanotubes and effective electrostatic ion–ion interactions from a tensorial dielectric model. J. Phys. Chem. B 123, 10850–10857 (2019).

    Article  CAS  Google Scholar 

  • Secchi, E., Niguès, A., Jubin, L., Siria, A. & Bocquet, L. Scaling behavior for ionic transport and its fluctuations in individual carbon nanotubes. Phys. Rev. Lett. 116, 154501 (2016).

    Article  Google Scholar 

  • Biesheuvel, P. & Bazant, M. Analysis of ionic conductance of carbon nanotubes. Phys. Rev. E 94, 050601 (2016).

    Article  CAS  Google Scholar 

  • Chipot, C. & Comer, J. Subdiffusion in membrane permeation of small molecules. Sci. Rep. 6, 35913 (2016).

    Article  Google Scholar 

  • Metzler, R. & Klafter, J. The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000).

    Article  CAS  Google Scholar 

  • Taylor, G. I. Disintegration of water drops in an electric field. Proc. R. Soc. Ser. A 280, 383–397 (1964).

    Google Scholar 

  • Gao, X., Zhao, T. & Li, Z. Fluid breakup in carbon nanotubes: an explanation of ultrafast ion transport. Phys. Fluids 29, 092003 (2017).

    Article  Google Scholar 

  • Chen, X. & Gross, R. W. Potassium flux through gramicidin ion channels is augmented in vesicles comprising plasmenylcholine: correlations between gramicidin conformation and function in chemically distinct host bilayer matrixes. Biochemistry 34, 7356–7364 (1995).

    Article  CAS  Google Scholar 

  • Andersen, O. S. Ion movement through gramicidin A channels. Single-channel measurements at very high potentials. Biophys. J. 41, 119–133 (1983).

    Article  CAS  Google Scholar 

  • Hemmler, R., Böse, G., Wagner, R. & Peters, R. Nanopore unitary permeability measured by electrochemical and optical single transporter recording. Biophys. J. 88, 4000–4007 (2005).

    Article  CAS  Google Scholar 

  • Menestrina, G. Ionic channels formed by Staphylococcus aureus alpha-toxin: voltage-dependent inhibition by divalent and trivalent cations. J. Membr. Biol. 90, 177–190 (1986).

    Article  CAS  Google Scholar 

  • Tunuguntla, R. H., Escalada, A., Frolov, V. A. & Noy, A. Synthesis, lipid membrane incorporation, and ion permeability testing of carbon nanotube porins. Nat. Protoc. 11, 2029–2047 (2016).

    Article  CAS  Google Scholar 

  • Tunuguntla, R. H., Allen, F. I., Kim, K., Belliveau, A. & Noy, A. Ultrafast proton transport in sub-1-nm diameter carbon nanotube porins. Nat. Nanotechnol. 11, 639–644 (2016).

    Article  CAS  Google Scholar 

  • Jezek, P., Mahdi, F. & Garlid, K. Reconstitution of the beef heart and rat liver mitochondrial K+/H+ (Na+/H+) antiporter. Quantitation of K+ transport with the novel fluorescent probe, PBFI. J. Biol. Chem. 265, 10522–10526 (1990).

    Article  CAS  Google Scholar 

  • Wanunu, M. et al. Rapid electronic detection of probe-specific microRNAs using thin nanopore sensors. Nat. Nanotechnol. 5, 807–814 (2010).

    Article  CAS  Google Scholar 

  • Vanommeslaeghe, K. et al. CHARMM general force field: a force field for drug‐like molecules compatible with the CHARMM all‐atom additive biological force fields. J. Comp. Chem. 31, 671–690 (2010).

    CAS  Google Scholar 

  • Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comp. Phys. 117, 1–19 (1995).

    Article  CAS  Google Scholar 

  • Dequidt, A., Devemy, J. & Padua, A. A. Thermalized Drude oscillators with the LAMMPS molecular dynamics simulator. J. Chem. Inf. Model 56, 260–268 (2016).

    Article  CAS  Google Scholar 

  • Kučerka, N. et al. Lipid bilayer structure determined by the simultaneous analysis of neutron and X-ray scattering data. Biophys. J. 95, 2356–2367 (2008).

    Article  Google Scholar 

  • Grossfield, A. WHAM: The Weighted Histogram Analysis Method Version 2.0.1 (University of Rochester,2021); http://membrane.urmc.rochester.edu/wordpress/?page_id=126

  • Bonthuis, D. J. et al. Theory and simulations of water flow through carbon nanotubes: prospects and pitfalls. J. Phys. Cond. Matter 23, 184110 (2011).

    Article  Google Scholar 

  • Vaitheeswaran, S., Rasaiah, J. C. & Hummer, G. Electric field and temperature effects on water in the narrow nonpolar pores of carbon nanotubes. J. Chem. Phys. 121, 7955–7965 (2004).

    Article  CAS  Google Scholar 

  • Shafiei, M., von Domaros, M., Bratko, D. & Luzar, A. Anisotropic structure and dynamics of water under static electric fields. J. Chem. Phys. 150, 074505 (2019).

    Article  Google Scholar 

  • Time Stamp:

    More from Nature Nanotechnology