Nanopore sequencing of DNA-barcoded probes for highly multiplexed detection of microRNA, proteins and small biomarkers - Nature Nanotechnology

Nanopore sequencing of DNA-barcoded probes for highly multiplexed detection of microRNA, proteins and small biomarkers – Nature Nanotechnology

Source Node: 2899860
  • Gold, P. & Freedman, S. O. Demonstration of tumor-specific antigens in human colonic cardinomata by immunological tolerance and absorption techniques. J. Exp. Med. 121, 439–462 (1965).

    Article  CAS  Google Scholar 

  • Wide, L., Roos, P. & Gemzell, C. Immunological determination of human pituitary luteinizing hormone (LH). Acta Endocrinol. 37, 445–449 (1961).

    Google Scholar 

  • LaDue, J. S., Wróblewski, F. & Karmen, A. Serum glutamic oxaloacetic transaminase activity in human acute transmural myocardial infarction. Science 120, 497–499 (1954).

    Article  CAS  Google Scholar 

  • Raizada, A. et al. Brain type natriuretic peptide (BNP)—as marker of new millennium in diagnosis of congestive heart failure. Indian J. Clin. Biochem. 22, 4–9 (2007).

    Article  CAS  Google Scholar 

  • Montalescot, G., Guedeney, P. & Tijssen, J. A multi-biomarker score for a global approach of risk: time for a change?. J. Am. Coll. Cardiol. 80, 898–901 (2022).

    Article  Google Scholar 

  • Hye, A. et al. Proteome-based plasma biomarkers for Alzheimer’s disease. Brain 129, 3042–3050 (2006).

    Article  CAS  Google Scholar 

  • Ueno, I., Sakai, T., Yamaoka, M., Yoshida, R. & Tsugita, A. Analysis of blood plasma proteins in patients with Alzheimer’s disease by two-dimensional electrophoresis, sequence homology and immunodetection. Electrophoresis 21, 1832–1845 (2000).

    <a data-track="click" rel="nofollow noopener" data-track-label="10.1002/(SICI)1522-2683(20000501)21:93.0.CO;2-7″ data-track-action=”article reference” href=”https://doi.org/10.1002%2F%28SICI%291522-2683%2820000501%2921%3A9%3C1832%3A%3AAID-ELPS1832%3E3.0.CO%3B2-7″ aria-label=”Article reference 7″ data-doi=”10.1002/(SICI)1522-2683(20000501)21:93.0.CO;2-7″>Article  CAS  Google Scholar 

  • Cao, M. C. et al. Serum biomarkers of neuroinflammation and blood–brain barrier leakage in amyotrophic lateral sclerosis. BMC Neurol. 22, 216–216 (2022).

    Article  CAS  Google Scholar 

  • de Ávila, B. E.-F. et al. Multiplexed determination of amino-terminal pro-B-type natriuretic peptide and C-reactive protein cardiac biomarkers in human serum at a disposable electrochemical magnetoimmunosensor. Electroanalysis 26, 254–261 (2014).

    Article  Google Scholar 

  • Sonawane, M. D., Nimse, S. B., Song, K. S. & Kim, T. Multiplex detection of cardiac biomarkers. Anal. Methods 9, 3773–3776 (2017).

    Article  CAS  Google Scholar 

  • Zhang, D. et al. Quantitative detection of multiplex cardiac biomarkers with encoded SERS nanotags on a single T line in lateral flow assay. Sens. Actuators B 277, 502–509 (2018).

    Article  CAS  Google Scholar 

  • An, B. et al. An antibody-free platform for multiplexed, sensitive quantification of protein biomarkers in complex biomatrices. J. Chromatogr. A 1676, 463261–463261 (2022).

    Article  CAS  Google Scholar 

  • Najjar, D. et al. A lab-on-a-chip for the concurrent electrochemical detection of SARS-CoV-2 RNA and anti-SARS-CoV-2 antibodies in saliva and plasma. Nat. Biomed. Eng. 6, 968–978 (2022).

    Article  CAS  Google Scholar 

  • Leandersson, P., Åkesson, A., Hedenfalk, I., Malander, S. & Borgfeldt, C. A multiplex biomarker assay improves the diagnostic performance of HE4 and CA125 in ovarian tumor patients. PLoS ONE 15, e0240418 (2020).

    Article  CAS  Google Scholar 

  • Ma, S. et al. Multiplexed serum biomarkers for the detection of lung cancer. eBioMedicine 11, 210–218 (2016).

    Article  Google Scholar 

  • Opstal-van Winden, A. et al. A bead-based multiplexed immunoassay to evaluate breast cancer biomarkers for early detection in pre-diagnostic serum. Int. J. Mol. Sci. 13, 13587–13604 (2012).

    Article  CAS  Google Scholar 

  • Pan, S. et al. Multiplex targeted proteomic assay for biomarker detection in plasma: a pancreatic cancer biomarker case study. J. Proteome Res. 11, 1937–1948 (2012).

    Article  CAS  Google Scholar 

  • Cook, D. B. et al. Multiplexing protein and gene level measurements on a single Luminex platform. Methods 158, 27–32 (2019).

    Article  CAS  Google Scholar 

  • Wilson, D. H. et al. The Simoa HD-1 analyzer: a novel fully automated digital immunoassay analyzer with single-molecule sensitivity and multiplexing. J. Lab. Autom. 21, 533–547 (2016).

    Article  CAS  Google Scholar 

  • Gold, L. et al. Aptamer-based multiplexed proteomic technology for biomarker discovery. PLoS ONE 5, e15004 (2010).

    Article  CAS  Google Scholar 

  • Rohloff, J. C. et al. Nucleic acid ligands with protein-like side chains: modified aptamers and their use as diagnostic and therapeutic agents. Mol. Ther. Nucleic Acids 3, e201 (2014).

    Article  CAS  Google Scholar 

  • O’Brien, J., Hayder, H., Zayed, Y. & Peng, C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front. Endocrinol. 9, 402–402 (2018).

    Article  Google Scholar 

  • Romaine, S. P. R., Tomaszewski, M., Condorelli, G. & Samani, N. J. MicroRNAs in cardiovascular disease: an introduction for clinicians. Heart 101, 921–928 (2015).

    Article  CAS  Google Scholar 

  • Zhou, S. S. et al. miRNAS in cardiovascular diseases: potential biomarkers, therapeutic targets and challenges. Acta Pharmacol. Sin. 39, 1073–1084 (2018).

    Article  CAS  Google Scholar 

  • Schueller, F. et al. The role of miRNAs in the pathophysiology of liver diseases and toxicity. Int. J. Mol. Sci. 19, 261 (2018).

    Article  Google Scholar 

  • Connor, K. L. & Denby, L. MicroRNAs as non-invasive biomarkers of renal disease. Nephrol. Dial. Transplant. 36, 428–429 (2021).

    Article  Google Scholar 

  • Cao, D. D., Li, L. & Chan, W. Y. MicroRNAs: key regulators in the central nervous system and their implication in neurological diseases. Int. J. Mol. Sci. 17, 842 (2016).

    Article  Google Scholar 

  • Peng, Y. & Croce, C. M. The role of MicroRNAs in human cancer. Signal Transduct. Target. Ther. 1, 15004 (2016).

    Article  Google Scholar 

  • Qin, S. & Zhang, C. MicroRNAs in vascular disease. J. Cardiovasc. Pharmacol. 57, 8–12 (2011).

    Article  CAS  Google Scholar 

  • Mestdagh, P. et al. Evaluation of quantitative miRNA expression platforms in the microRNA quality control (miRQC) study. Nat. Methods 11, 809–815 (2014).

    Article  CAS  Google Scholar 

  • Lin, X., Ivanov, A. P. & Edel, J. B. Selective single molecule nanopore sensing of proteins using DNA aptamer-functionalised gold nanoparticles. Chem. Sci. 8, 3905–3912 (2017).

    Article  CAS  Google Scholar 

  • Ren, R. et al. Nanopore extended field-effect transistor for selective single-molecule biosensing. Nat. Commun. 8, 586 (2017).

    Article  Google Scholar 

  • Wanunu, M. et al. Rapid electronic detection of probe-specific microRNAs using thin nanopore sensors. Nat. Nanotechnol. 5, 807–814 (2010).

    Article  CAS  Google Scholar 

  • Xue, L. et al. Solid-state nanopore sensors. Nat. Rev. Mater. 5, 931–951 (2020).

    Article  CAS  Google Scholar 

  • Sultan, M. & Kanavarioti, A. Nanopore device-based fingerprinting of RNA oligos and microRNAs enhanced with an osmium tag. Sci. Rep. 9, 14180 (2019).

    Article  Google Scholar 

  • Miles, B. N. et al. Single molecule sensing with solid-state nanopores: novel materials, methods, and applications. Chem. Soc. Rev. 42, 15–28 (2012).

    Article  Google Scholar 

  • Al Sulaiman, D., Cadinu, P., Ivanov, A. P., Edel, J. B. & Ladame, S. Chemically modified hydrogel-filled nanopores: a tunable platform for single-molecule sensing. Nano Lett. 18, 6084–6093 (2018).

    Article  CAS  Google Scholar 

  • Ren, R. et al. Selective sensing of proteins using aptamer functionalized nanopore extended field-effect transistors. Small Methods 4, 2000356 (2020).

    Article  CAS  Google Scholar 

  • Tan, S. et al. DNA-functionalized silicon nitride nanopores for sequence-specific recognition of DNA biosensor. Nanoscale Res. Lett. 10, 205 (2015).

    Article  Google Scholar 

  • Wei, R., Gatterdam, V., Wieneke, R., Tampé, R. & Rant, U. Stochastic sensing of proteins with receptor-modified solid-state nanopores. Nat. Nanotechnol. 7, 257–263 (2012).

    Article  CAS  Google Scholar 

  • Sze, J. Y. Y., Ivanov, A. P., Cass, A. E. G. & Edel, J. B. Single molecule multiplexed nanopore protein screening in human serum using aptamer modified DNA carriers. Nat. Commun. 8, 1552 (2017).

    Article  Google Scholar 

  • Cai, S., Sze, J. Y. Y., Ivanov, A. P. & Edel, J. B. Small molecule electro-optical binding assay using nanopores. Nat. Commun. 10, 1797 (2019).

    Article  Google Scholar 

  • Cai, S. et al. Single-molecule amplification-free multiplexed detection of circulating microRNA cancer biomarkers from serum. Nat. Commun. 12, 3515 (2021).

    Article  CAS  Google Scholar 

  • Liu, H. et al. Expression and purification of a novel mycobacterial porin MspA mutant in E. coli. J. Nanosci. Nanotechnol. 17, 9125–9129 (2017).

    Article  CAS  Google Scholar 

  • Deamer, D., Akeson, M. & Branton, D. Three decades of nanopore sequencing. Nat. Biotechnol. 34, 518–524 (2016).

    Article  CAS  Google Scholar 

  • One technology, one platform for all your biology. Oxford Nanopore Technologies https://nanoporetech.com/applications/techniques/short-fragment-mode (2023).

  • Kamanu, T. K. K., Radovanovic, A., Archer, J. A. C. & Bajic, V. B. Exploration of miRNA families for hypotheses generation. Sci. Rep. 3, 2940 (2013).

    Article  Google Scholar 

  • Craig, J. M. et al. Revealing dynamics of helicase translocation on single-stranded DNA using high-resolution nanopore tweezers. Proc. Natl Acad. Sci. USA 114, 11932–11937 (2017).

    Article  CAS  Google Scholar 

  • Chen, C. et al. Real-time quantification of microRNAs by stem–loop RT–PCR. Nucleic Acids Res. 33, e179 (2005).

    Article  Google Scholar 

  • Time Stamp:

    More from Nature Nanotechnology