Engineering metal oxidation using epitaxial strain - Nature Nanotechnology

Engineering metal oxidation using epitaxial strain – Nature Nanotechnology

Source Node: 2670167
  • Novotny, Z. et al. Kinetics of the thermal oxidation of Ir(100) toward IrO2 studied by ambient-pressure X-ray photoelectron spectroscopy. J. Phys. Chem. Lett. 11, 3601–3607 (2020).

    Article  Google Scholar 

  • van Spronsen, M. A., Frenken, J. W. M. & Groot, I. M. N. Observing the oxidation of platinum. Nat. Commun. 8, 429 (2017).

    Article  Google Scholar 

  • Nunn, W. et al. Novel synthesis approach for “stubborn” metals and metal oxides. Proc. Natl Acad. Sci. USA 118, e2105713118 (2021).

    Article  CAS  Google Scholar 

  • Liu, X. R. et al. Synthesis and electronic properties of Ruddlesden–Popper strontium iridate epitaxial thin films stabilized by control of growth kinetics. Phys. Rev. Mater. 1, 075004 (2017).

    Article  Google Scholar 

  • Nair, H. P. et al. Demystifying the growth of superconducting Sr2RuO4 thin films. APL Mater. 6, 101108 (2018).

    Article  Google Scholar 

  • Nunn, W. et al. Solid-source metal-organic molecular beam epitaxy of epitaxial RuO2. APL Mater. 9, 091112 (2021).

    Article  CAS  Google Scholar 

  • Wakabayashi, Y. K. et al. Machine-learning-assisted thin-film growth: Bayesian optimization in molecular beam epitaxy of SrRuO3 thin films.APL Mater. 7, 101114 (2019).

    Article  Google Scholar 

  • Kim, B. J. et al. Phase-sensitive observation of a spin-orbital Mott state in Sr2IrO4. Science 323, 1329–1332 (2009).

    Article  CAS  Google Scholar 

  • Kim, W. J. et al. Strain engineering of the magnetic multipole moments and anomalous Hall effect in pyrochlore iridate thin films.Sci. Adv. 6, eabb1539 (2020).

    Article  CAS  Google Scholar 

  • Kim, Y. K., Sung, N. H., Denlinger, J. D. & Kim, B. J. Observation of a d-wave gap in electron-doped Sr2IrO4. Nat. Phys. 12, 37–41 (2016).

    Article  CAS  Google Scholar 

  • Kushwaha, P. et al. Nearly free electrons in a 5d delafossite oxide metal. Sci. Adv. 1, e1500692 (2015).

    Article  Google Scholar 

  • Nelson, J. N. et al. Interfacial charge transfer and persistent metallicity of ultrathin SrIrO3/SrRuO3 heterostructures. Sci. Adv. 8, eabj0481 (2022).

    Article  CAS  Google Scholar 

  • Zhu, Z. H. et al. Anomalous antiferromagnetism in metallic RuO2 determined by resonant X-ray scattering. Phys. Rev. Lett. 122, 017202 (2019).

    Article  CAS  Google Scholar 

  • Uchida, M. et al. Field-direction control of the type of charge carriers in nonsymmorphic IrO2. Phys. Rev. B 91, 241119 (2015).

    Article  Google Scholar 

  • Smejkal, L., Gonzalez-Hernandez, R., Jungwirth, T. & Sinova, J. Crystal time-reversal symmetry breaking and spontaneous Hall effect in collinear antiferromagnets. Sci. Adv. 6, eaaz8809 (2020).

    Article  CAS  Google Scholar 

  • Nelson, J. N. et al. Dirac nodal lines protected against spin-orbit interaction in IrO2. Phys. Rev. Mater. 3, 064205 (2019).

    Article  CAS  Google Scholar 

  • Ruf, J. P. et al. Strain-stabilized superconductivity. Nat. Commun. 12, 59 (2021).

    Article  CAS  Google Scholar 

  • Ellingham, H. J. T. Reducibility of oxides and sulphides in metallurgical processes. J. Soc. Chem. Ind. Trans. Commun. 63, 125–160 (1944).

    CAS  Google Scholar 

  • Chambers, S. A. Epitaxial growth and properties of thin film oxides. Surf. Sci. Rep. 39, 105–180 (2000).

    Article  CAS  Google Scholar 

  • Prakash, A. et al. Hybrid molecular beam epitaxy for the growth of stoichiometric BaSnO3. J. Vac. Sci. Technol. A 33, 060608 (2015).

    Article  Google Scholar 

  • Schlom, D. G. Perspective: oxide molecular-beam epitaxy rocks!. APL Mater. 3, 062403 (2015).

    Article  Google Scholar 

  • Smith, E. H. et al. Exploiting kinetics and thermodynamics to grow phase-pure complex oxides by molecular-beam epitaxy under continuous codeposition. Phys. Rev. Mater. 1, 023403 (2017).

    Article  Google Scholar 

  • Song, J. H., Susaki, T. & Hwang, H. Y. Enhanced thermodynamic stability of epitaxial oxide thin films. Adv. Mater. 20, 2528–252 (2008).

    Article  CAS  Google Scholar 

  • Petrie, J. R. et al. Strain control of oxygen vacancies in epitaxial strontium cobaltite films. Adv. Funct. Mater. 26, 1564–1570 (2016).

    Article  CAS  Google Scholar 

  • Yun, H., Prakash, A., Birol, T., Jalan, B. & Mkhoyan, K. A. Dopant segregation inside and outside dislocation cores in perovskite BaSnO3 and reconstruction of the local atomic and electronic structures. Nano Lett. 21, 4357–4364 (2021).

    Article  CAS  Google Scholar 

  • Gorbenko, O. Y., Samoilenkov, S. V., Graboy, I. E. & Kaul, A. R. Epitaxial stabilization of oxides in thin films. Chem. Mater. 14, 4026–4043 (2002).

    Article  CAS  Google Scholar 

  • Truttmann, T. K., Liu, F. D., Garcia-Barriocanal, J., James, R. D. & Jalan, B. Strain relaxation via phase transformation in high-mobility SrSnO3 films. ACS Appl. Electron. Mater. 3, 1127–1132 (2021).

    Article  CAS  Google Scholar 

  • Bose, A. et al. Effects of anisotropic strain on spin-orbit torque produced by the Dirac nodal line semimetal IrO2. ACS Appl. Mater. Interfaces 12, 55411–55416 (2020).

    Article  CAS  Google Scholar 

  • Liu, J. et al. Strain-induced nonsymmorphic symmetry breaking and removal of Dirac semimetallic nodal line in an orthoperovskite iridate. Phys. Rev. B 93, 085118 (2016).

    Article  Google Scholar 

  • Hou, X., Takahashi, R., Yamamoto, T. & Lippmaa, M. Microstructure analysis of IrO2 thin films. J. Cryst. Growth 462, 24–28 (2017).

    Article  CAS  Google Scholar 

  • Stoerzinger, K. A., Qiao, L., Biegalski, M. D. & Shao-Horn, Y. Orientation-dependent oxygen evolution activities of rutile IrO2 and RuO2. J. Phys. Chem. Lett. 5, 1636–1641 (2014).

    Article  CAS  Google Scholar 

  • Abb, M. J. S., Herd, B. & Over, H. Template-assisted growth of ultrathin single-crystalline IrO2(110) films on RuO2(110)/Ru(0001) and its thermal stability. J. Phys. Chem. C 122, 14725–14732 (2018).

    Article  CAS  Google Scholar 

  • Wang, F. & Senthil, T. Twisted Hubbard model for Sr2IrO4: magnetism and possible high temperature superconductivity. Phys. Rev. Lett. 106, 136402 (2011).

    Article  Google Scholar 

  • Pesin, D. & Balents, L. Mott physics and band topology in materials with strong spin-orbit interaction. Nat. Phys. 6, 376–381 (2010).

    Article  CAS  Google Scholar 

  • Wan, X. G., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).

    Article  Google Scholar 

  • Go, A., Witczak-Krempa, W., Jeon, G. S., Park, K. & Kim, Y. B. Correlation effects on 3D topological phases: from bulk to boundary. Phys. Rev. Lett. 109, 066401 (2012).

    Article  Google Scholar 

  • Guo, L. et al. Searching for a route to synthesize in situ epitaxial Pr2Ir2O7 thin films with thermodynamic methods. npj Comput. Mater. 7, 144 (2021).

    Article  CAS  Google Scholar 

  • Gutierrez-Llorente, A., Iglesias, L., Rodriguez-Gonzalez, B. & Rivadulla, F. Epitaxial stabilization of pulsed laser deposited Srn+1IrnO3n+1 thin films: entangled effect of growth dynamics and strain. APL Mater 6, 091101 (2018).

    Article  Google Scholar 

  • Butler, S. R. & Gillson, J. L. Crystal growth, electrical resistivity and lattice parameters of Ruo2 and Iro2. Mater. Res. Bull. 6, 81–88 (1971).

    Article  CAS  Google Scholar 

  • Sun, Y., Zhang, Y., Liu, C. X., Felser, C. & Yan, B. H. Dirac nodal lines and induced spin Hall effect in metallic rutile oxides. Phys. Rev. B 95, 235104 (2017).

    Article  Google Scholar 

  • Kawasaki, J. K. et al. Engineering carrier effective masses in ultrathin quantum wells of IrO2. Phys. Rev. Lett. 121, 176802 (2018).

    Article  CAS  Google Scholar 

  • Kawasaki, J. K. et al. Rutile IrO2/TiO2 superlattices: a hyperconnected analog to the Ruddlesden–Popper structure. Phys. Rev. Mater. 2, 054206 (2018).

    Article  CAS  Google Scholar 

  • Kawasaki, J. K., Uchida, M., Paik, H., Schlom, D. G. & Shen, K. M. Evolution of electronic correlations across the rutile, perovskite, and Ruddlesden-Popper iridates with octahedral connectivity. Phys. Rev. B 94, 121104 (2016).

    Article  Google Scholar 

  • Morozova, N. B., Semyannikov, P. P., Sysoev, S. V., Grankin, V. M. & Igumenov, I. K. Saturated vapor pressure of iridium(III) acetylacetonate. J. Therm. Anal. Calorim. 60, 489–495 (2000).

    Article  CAS  Google Scholar 

  • Freakley, S. J., Ruiz-Esquius, J. & Morgan, D. J. The X-ray photoelectron spectra of Ir, IrO2 and IrCl3 revisited. Surf. Interface Anal. 49, 794–799 (2017).

    Article  CAS  Google Scholar 

  • Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, 7 (1964).

    Article  Google Scholar 

  • Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965).

    Article  Google Scholar 

  • Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  CAS  Google Scholar 

  • Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).

    Article  CAS  Google Scholar 

  • Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  • Time Stamp:

    More from Nature Nanotechnology