Ultrafast exciton fluid flow in an atomically thin MoS2 semiconductor - Nature Nanotechnology

Ultrafast exciton fluid flow in an atomically thin MoS2 semiconductor – Nature Nanotechnology

Source Node: 2797228
  • Müller, M., Schmalian, J. & Fritz, L. Graphene: a nearly perfect fluid. Phys. Rev. Lett. 103, 025301 (2009).

    Google Scholar 

  • Bandurin, D. A. et al. Negative local resistance caused by viscous electron backflow in graphene. Science 351, 1055–1058 (2016).

    CAS  Google Scholar 

  • Crossno, J. et al. Observation of the Dirac fluid and the breakdown of the Wiedemann–Franz law in graphene. Science 351, 1058–1061 (2016).

    CAS  Google Scholar 

  • Moll, P. J. W., Kushwaha, P., Nandi, N., Schmidt, B. & Mackenzie, A. P. Evidence for hydrodynamic electron flow in PdCuO2. Science 351, 1061–1064 (2016).

    CAS  Google Scholar 

  • Huang, K. Equation of state of a Bose–Einstein system of particles with attractive interactions. Phys. Rev. 119, 1129–1142 (1960).

    Google Scholar 

  • Fleming, P. D. Hydrodynamic behavior of triplet excitons. J. Chem. Phys. 59, 3199–3206 (1973).

    CAS  Google Scholar 

  • Link, B. & Baym, G. Hydrodynamic transport of excitons in semiconductors and Bose–Einstein condensation. Phys. Rev. Lett. 69, 2959–2962 (1992).

    CAS  Google Scholar 

  • Laikhtman, B. & Rapaport, R. Exciton correlations in coupled quantum wells and their luminescence blue shift. Phys. Rev. B 80, 195313 (2009).

    Google Scholar 

  • Versteegh, M. A. M., van Lange, A. J., Stoof, H. T. C. & Dijkhuis, J. I. Observation of preformed electron–hole Cooper pairs in highly excited ZnO. Phys. Rev. B 85, 195206 (2012).

    Google Scholar 

  • Stern, M., Umansky, V. & Bar-Joseph, I. Exciton liquid in coupled quantum wells. Science 343, 55–57 (2014).

    CAS  Google Scholar 

  • Glazov, M. M. & Suris, R. A. Collective states of excitons in semiconductors. Phys.-Uspekhi 63, 1051–1071 (2020).

    CAS  Google Scholar 

  • Honold, A., Schultheis, L., Kuhl, J. & Tu, C. W. Collision broadening of two-dimensional excitons in a gaas single quantum well. Phys. Rev. B 40, 6442–6445 (1989).

    CAS  Google Scholar 

  • Ramon, G., Mann, A. & Cohen, E. Theory of neutral and charged exciton scattering with electrons in semiconductor quantum wells. Phys. Rev. B 67, 045323 (2003).

    Google Scholar 

  • Anankine, R. et al. Temporal coherence of spatially indirect excitons across Bose–Einstein condensation: the role of free carriers. N. J. Phys. 20, 073049 (2018).

    Google Scholar 

  • Keldysh, L. V. The electron–hole liquid in semiconductors. Contemp. Phys. 27, 395–428 (1986).

    CAS  Google Scholar 

  • Korn, T., Heydrich, S., Hirmer, M., Schmutzler, J. & Schüller, C. Low-temperature photocarrier dynamics in monolayer MoS2. Appl. Phys. Lett. 99, 102109 (2011).

    Google Scholar 

  • Robert, C. et al. Exciton radiative lifetime in transition metal dichalcogenide monolayers. Phys. Rev. B 93, 205423 (2016).

    Google Scholar 

  • Liu, S. et al. Room-temperature valley polarization in atomically thin semiconductors via chalcogenide alloying. ACS Nano 14, 9873–9883 (2020).

    CAS  Google Scholar 

  • Steinhoff, A. et al. Exciton fission in monolayer transition metal dichalcogenide semiconductors. Nat. Commun. 8, 1166 (2017).

    CAS  Google Scholar 

  • Selig, M. et al. Dark and bright exciton formation, thermalization, and photoluminescence in monolayer transition metal dichalcogenides. 2D Mater. 5, 035017 (2018).

    Google Scholar 

  • Efimkin, D. K., Laird, E. K., Levinsen, J., Parish, M. M. & MacDonald, A. H. Electron–exciton interactions in the exciton–polaron problem. Phys. Rev. B 103, 075417 (2021).

    CAS  Google Scholar 

  • Kumar, N. et al. Exciton diffusion in monolayer and bulk MoSe2. Nanoscale 6, 4915–4919 (2014).

    CAS  Google Scholar 

  • Kato, T. & Kaneko, T. Transport dynamics of neutral excitons and trions in monolayer WS2. ACS Nano 10, 9687–9694 (2016).

    CAS  Google Scholar 

  • Onga, M., Zhang, Y., Ideue, T. & Iwasa, Y. Exciton Hall effect in monolayer MoSs2. Nat. Mat. 16, 1193–1197 (2017).

    CAS  Google Scholar 

  • Zipfel, J. et al. Exciton diffusion in monolayer semiconductors with suppressed disorder. Phys. Rev. B 101, 115430 (2020).

    CAS  Google Scholar 

  • Glazov, M. M. Quantum interference effect on exciton transport in monolayer semiconductors. Phys. Rev. Lett. 124, 166802 (2020).

    CAS  Google Scholar 

  • Hotta, T. et al. Exciton diffusion in hBN-encapsulated monolayer MoSe2. Phys. Rev. B 102, 115424 (2020).

    CAS  Google Scholar 

  • Uddin, S. Z. et al. Neutral exciton diffusion in monolayer MoS2. ACS Nano 14, 13433–13440 (2020).

    CAS  Google Scholar 

  • High, A. A. et al. Spontaneous coherence in a cold exciton gas. Nature 483, 584–588 (2012).

    CAS  Google Scholar 

  • Anankine, R. et al. Quantized vortices and four-component superfluidity of semiconductor excitons. Phys. Rev. Lett. 118, 127402 (2017).

    Google Scholar 

  • Shahnazaryan, V., Iorsh, I., Shelykh, I. A. & Kyriienko, O. Exciton–exciton interaction in transition-metal dichalcogenide monolayers. Phys. Rev. B 96, 115409 (2017).

    Google Scholar 

  • Amani, M. et al. Near-unity photoluminescence quantum yield in MoSs2. Science 350, 1065–1068 (2015).

    CAS  Google Scholar 

  • Lien, D.-H. et al. Electrical suppression of all nonradiative recombination pathways in monolayer semiconductors. Science 364, 468–471 (2019).

    CAS  Google Scholar 

  • Ballarini, D. et al. Macroscopic two-dimensional polariton condensates. Phys. Rev. Lett. 118, 215301 (2017).

    Google Scholar 

  • Deng, H., Haug, H. & Yamamoto, Y. Exciton–polariton Bose–Einstein condensation. Rev. Mod. Phys. 82, 1489–1537 (2010).

    CAS  Google Scholar 

  • Michalsky, T., Wille, M., Grundmann, M. & Schmidt-Grund, R. Spatio-temporal evolution of coherent polariton modes in ZnO microwire cavities at room temperature. Nano Lett. 18, 6820–6825 (2018).

    CAS  Google Scholar 

  • Elias, D. C. et al. Dirac cones reshaped by interaction effects in suspended graphene. Nat. Phys. 7, 701–704 (2011).

    CAS  Google Scholar 

  • Sung, J. et al. Long-range ballistic propagation of carriers in methylammonium lead iodide perovskite thin films. Nat. Phys. 16, 171–176 (2020).

    CAS  Google Scholar 

  • Kalt, H. et al. Quasi-ballistic transport of excitons in quantum wells. J. Lumin. 112, 136–141 (2005).

    CAS  Google Scholar 

  • Butov, L. V., Gossard, A. C. & Chemla, D. S. Macroscopically ordered state in an exciton system. Nature 418, 751–754 (2002).

    CAS  Google Scholar 

  • Snoke, D., Denev, S., Liu, Y., Pfeiffer, L. & West, K. Long-range transport in excitonic dark states in coupled quantum wells. Nature 418, 754 (2002).

    CAS  Google Scholar 

  • Dang, S. et al. Observation of algebraic time order for two-dimensional dipolar excitons. Phys. Rev. Res. 2, 032013 (2020).

    CAS  Google Scholar 

  • Trauernicht, D. P., Wolfe, J. P. & Mysyrowicz, A. Highly mobile paraexcitons in cuprous oxide. Phys. Rev. Lett. 52, 855–858 (1984).

    CAS  Google Scholar 

  • Haas, F. & Mahmood, S. Linear and nonlinear ion-acoustic waves in nonrelativistic quantum plasmas with arbitrary degeneracy. Phys. Rev. E 92, 053112 (2015).

    Google Scholar 

  • Svintsov, D., Vyurkov, V., Yurchenko, S., Otsuji, T. & Ryzhii, V. Hydrodynamic model for electron–hole plasma in graphene. J. Appl. Phys. 111, 083715 (2012).

    Google Scholar 

  • Erkensten, D., Brem, S. & Malic, E. Exciton-exciton interaction in transition metal dichalcogenide monolayers and van der Waals heterostructures. Phys. Rev. B 103, 045426 (2021).

    CAS  Google Scholar 

  • Dery, H. & Song, Y. Polarization analysis of excitons in monolayer and bilayer transition-metal dichalcogenides. Phys. Rev. B 92, 125431 (2015).

    Google Scholar 

  • Do, T. T. H. et al. Bright exciton fine-structure in two-dimensional lead halide perovskites. Nano Lett. 20, 5141–5148 (2020).

    CAS  Google Scholar 

  • Qiu, D. Y., Cao, T. & Louie, S. G. Nonanalyticity, valley quantum phases, and lightlike exciton dispersion in monolayer transition metal dichalcogenides: theory and first-principles calculations. Phys. Rev. Lett. 115, 176801 (2015).

    Google Scholar 

  • Kadantsev, E. S. & Hawrylak, P. Electronic structure of a single MoS2 monolayer. Solid State Commun. 152, 909–913 (2012).

    CAS  Google Scholar 

  • Chen, W., Huang, C.-J. & Zhu, Q. Searching for unconventional superfluid in exciton condensate of monolayer semiconductors. Preprint at https://doi.org/10.48550/arXiv.2302.05585

  • Guo, H., Zhang, X. & Lu, G. Tuning moiré; excitons in Janus heterobilayers for high-temperature Bose–Einstein condensation. Sci. Adv. 8, eabp9757 (2022).

    CAS  Google Scholar 

  • Time Stamp:

    More from Nature Nanotechnology