Ultraviolet interlayer excitons in bilayer WSe2 - Nature Nanotechnology

Ultraviolet interlayer excitons in bilayer WSe2 – Nature Nanotechnology

Source Node: 3017831
  • Rivera, P. et al. Interlayer valley excitons in heterobilayers of transition metal dichalcogenides. Nat. Nanotechnol. 13, 1004–1015 (2018).

    Article  CAS  Google Scholar 

  • Islam, M. N. et al. Electroabsorption in GaAs/AlGaAs coupled quantum well waveguides. Appl. Phys. Lett. 50, 1098–1100 (1987).

    Article  CAS  Google Scholar 

  • Lin, K.-Q. et al. Twist-angle engineering of excitonic quantum interference and optical nonlinearities in stacked 2D semiconductors. Nat. Commun. 12, 1553 (2021).

    Article  CAS  Google Scholar 

  • Lin, K.-Q. et al. Narrow-band high-lying excitons with negative-mass electrons in monolayer WSe2. Nat. Commun. 12, 5500 (2021).

    Article  CAS  Google Scholar 

  • Zhang, Y. et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820–823 (2009).

    Article  CAS  Google Scholar 

  • Wang, Z., Chiu, Y.-H., Honz, K., Mak, K. F. & Shan, J. Electrical tuning of interlayer exciton gases in WSe2 bilayers. Nano Lett. 18, 137–143 (2018).

    Article  CAS  Google Scholar 

  • Wang, L. et al. Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nat. Mater. 19, 861–866 (2020).

    Article  CAS  Google Scholar 

  • Shi, Q. et al. Bilayer WSe2 as a natural platform for interlayer exciton condensates in the strong coupling limit. Nat. Nanotechnol. 17, 577–582 (2022).

  • Manca, M. et al. Enabling valley selective exciton scattering in monolayer WSe2 through upconversion. Nat. Commun. 8, 14927 (2017).

    Article  CAS  Google Scholar 

  • Lin, K.-Q. et al. Large-scale mapping of moiré superlattices by hyperspectral Raman imaging. Adv. Mater. 33, 2008333 (2021).

    Article  CAS  Google Scholar 

  • Ohba, N., Miwa, K., Nagasako, N. & Fukumoto, A. First-principles study on structural, dielectric, and dynamical properties for three BN polytypes. Phys. Rev. B 63, 115207 (2001).

    Article  Google Scholar 

  • Chen, Y. J., Koteles, E. S., Elman, B. S. & Armiento, C. A. Effect of electric fields on excitons in a coupled double-quantum-well structure. Phys. Rev. B 36, 4562–4565 (1987).

    Article  CAS  Google Scholar 

  • Jauregui, L. A. et al. Electrical control of interlayer exciton dynamics in atomically thin heterostructures. Science 366, 870–875 (2019).

    Article  CAS  Google Scholar 

  • Barré, E. et al. Optical absorption of interlayer excitons in transition-metal dichalcogenide heterostructures. Science 376, 406–410 (2022).

    Article  Google Scholar 

  • Leisgang, N. et al. Giant Stark splitting of an exciton in bilayer MoS2. Nat. Nanotechnol. 15, 901–907 (2020).

    Article  CAS  Google Scholar 

  • Peimyoo, N. et al. Electrical tuning of optically active interlayer excitons in bilayer MoS2. Nat. Nanotechnol. 16, 888–893 (2021).

    Article  CAS  Google Scholar 

  • Wang, Y., Wang, Z., Yao, W., Liu, G.-B. & Yu, H. Interlayer coupling in commensurate and incommensurate bilayer structures of transition-metal dichalcogenides. Phys. Rev. B 95, 115429 (2017).

    Article  Google Scholar 

  • Brem, S. et al. Hybridized intervalley moiré excitons and flat bands in twisted WSe2 bilayers. Nanoscale 12, 11088–11094 (2020).

    Article  CAS  Google Scholar 

  • Lin, K.-Q. et al. High-lying valley-polarized trions in 2D semiconductors. Nat. Commun. 13, 6980 (2022).

    Article  CAS  Google Scholar 

  • Mak, K. F. et al. Tightly bound trions in monolayer MoS2. Nat. Mater. 12, 207–211 (2012).

    Google Scholar 

  • Ross, J. S. et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat. Commun. 4, 1474 (2013).

    Article  Google Scholar 

  • Deilmann, T. & Thygesen, K. S. Interlayer trions in the MoS2/WS2 van der Waals heterostructure. Nano Lett. 18, 1460–1465 (2018).

    Article  CAS  Google Scholar 

  • Calman, E. V. et al. Indirect excitons and trions in MoSe2/WSe2 van der Waals heterostructures. Nano Lett. 20, 1869–1875 (2020).

    Article  CAS  Google Scholar 

  • Brotons-Gisbert, M. et al. Moiré-trapped interlayer trions in a charge-tunable WSe2/MoSe2 heterobilayer. Phys. Rev. X 11, 031033 (2021).

    CAS  Google Scholar 

  • Liu, E. et al. Signatures of moiré trions in WSe2/MoSe2 heterobilayers. Nature 594, 46–50 (2021).

    Article  CAS  Google Scholar 

  • Wilson, N. R. et al. Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures. Sci. Adv. 3, e1601832 (2017).

    Article  Google Scholar 

  • Ramasubramaniam, A., Naveh, D. & Towe, E. Tunable band gaps in bilayer transition-metal dichalcogenides. Phys. Rev. B 84, 205325 (2011).

    Article  Google Scholar 

  • Movva, H. C. P. et al. Tunable Γ−K valley populations in hole-doped trilayer WSe2. Phys. Rev. Lett. 120, 107703 (2018).

    Article  CAS  Google Scholar 

  • Xu, Y. et al. A tunable bilayer Hubbard model in twisted WSe2. Nat. Nanotechnol. 17, 934–939 (2022).

  • Ghiotto, A. et al. Quantum criticality in twisted transition metal dichalcogenides. Nature 597, 345–349 (2021).

    Article  CAS  Google Scholar 

  • Unuchek, D. et al. Room-temperature electrical control of exciton flux in a van der Waals heterostructure. Nature 560, 340–344 (2018).

    Article  CAS  Google Scholar 

  • Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    Article  Google Scholar 

  • Time Stamp:

    More from Nature Nanotechnology