Non-invasive activation of intratumoural gene editing for improved adoptive T-cell therapy in solid tumours - Nature Nanotechnology

Non-invasive activation of intratumoural gene editing for improved adoptive T-cell therapy in solid tumours – Nature Nanotechnology

Source Node: 2653774
  • Hou, A. J., Chen, L. C. & Chen, Y. Y. Navigating CAR-T cells through the solid-tumor microenvironment. Nat. Rev. Drug Discov. 20, 531–550 (2021).

    Article  CAS  Google Scholar 

  • Hong, M., Clubb, J. D. & Chen, Y. Y. Engineering CAR-T cells for next-generation cancer therapy. Cancer Cell 38, 473–488 (2020).

    Article  CAS  Google Scholar 

  • Chen, J. et al. NR4A transcription factors limit CAR T cell function in solid tumors. Nature 567, 530–534 (2019).

    Article  CAS  Google Scholar 

  • Schreiber, R. D., Old, L. J. & Smyth, M. J. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331, 1565–1570 (2011).

    Article  CAS  Google Scholar 

  • Zou, W. Immunosuppressive networks in the tumor environment and their therapeutic relevance. Nat. Rev. Cancer 5, 263–274 (2005).

    Article  CAS  Google Scholar 

  • Huang, Y. et al. Improving immune–vascular crosstalk for cancer immunotherapy. Nat. Rev. Immunol. 18, 195–203 (2018).

    Article  CAS  Google Scholar 

  • Caruana, I. et al. Heparanase promotes tumor infiltration and antitumor activity of CAR-redirected T lymphocytes. Nat. Med. 21, 524–529 (2015).

    Article  CAS  Google Scholar 

  • Chang, Z. L., Hou, A. J. & Chen, Y. Y. Engineering primary T cells with chimeric antigen receptors for rewired responses to soluble ligands. Nat. Protoc. 15, 1507–1524 (2020).

    Article  CAS  Google Scholar 

  • Leen, A. M. et al. Reversal of tumor immune inhibition using a chimeric cytokine receptor. Mol. Ther. 22, 1211–1220 (2014).

    Article  CAS  Google Scholar 

  • Cherkassky, L. et al. Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition. J. Clin. Invest. 126, 3130–3144 (2016).

    Article  Google Scholar 

  • Liu, X. et al. A chimeric switch-receptor targeting PD1 augments the efficacy of second-generation CAR T-cells in advanced solid tumors. Cancer Res. 76, 1578–1590 (2016).

    Article  CAS  Google Scholar 

  • Tang, T. C. Y., Xu, N. & Dolnikov, A. Targeting the immune-suppressive tumor microenvironment to potentiate CAR T cell therapy. Cancer Rep. Rev. 4, 1–5 (2020).

    Google Scholar 

  • Karlsson, H. Approaches to augment CAR T-cell therapy by targeting the apoptotic machinery. Biochem. Soc. Trans. 44, 371–376 (2016).

    Article  CAS  Google Scholar 

  • Green, D. R. The coming decade of cell death research: five riddles. Cell 177, 1094–1107 (2019).

    Article  CAS  Google Scholar 

  • Jorgensen, I., Rayamajhi, M. & Miao, E. A. Programmed cell death as a defence against infection. Nat. Rev. Immunol. 17, 151–164 (2017).

    Article  CAS  Google Scholar 

  • Kim, J. A., Kim, Y., Kwon, B. M. & Han, D. C. The natural compound cantharidin induces cancer cell death through inhibition of heat shock protein 70 (HSP70) and BCL2-associated athanogene domain 3 (BAG3) expression by blocking heat shock factor 1 (HSF1) binding to promoters. J. Biol. Chem. 288, 28713–28726 (2013).

    Article  CAS  Google Scholar 

  • Rosati, A., Graziano, V., Laurenzi, V. D., Pascale, M. & Turco, M. C. BAG3: a multifaceted protein that regulates major cell pathways. Cell Death Dis. 2, e141 (2011).

    Article  CAS  Google Scholar 

  • Wang, B. K. et al. Gold-nanorods–siRNA nanoplex for improved photothermal therapy by gene silencing. Biomaterials 78, 27 (2016).

    Article  CAS  Google Scholar 

  • Joung, J. et al. CRISPR activation screen identifies BCL-2 proteins and B3GNT2 as drivers of cancer resistance to T cell-mediated cytotoxicity. Nat. Commun. 13, 1606 (2022).

    Article  CAS  Google Scholar 

  • Rosati, A. et al. BAG3 promotes pancreatic ductal adenocarcinoma growth by activating stromal macrophages. Nat. Commun. 6, 8695 (2015).

    Article  CAS  Google Scholar 

  • Lamprecht, A. Nanomedicines in gastroenterology and hepatology. Nat. Rev. Gastroenterol. Hepatol. 12, 669 (2015).

    Article  Google Scholar 

  • Dudeja, V., Vickers, S. M. & Saluja, A. K. The role of heat shock proteins in gastrointestinal diseases. Gut 58, 1000–1009 (2009).

    Article  CAS  Google Scholar 

  • Marzullo, L., Turco, M. C. & Marco, M. D. The multiple activities of BAG3 protein: mechanisms. Biochim. Biophys. Acta, Gen. Subj. 1864, 129628 (2020).

    Article  CAS  Google Scholar 

  • Romano, M. F. et al. BAG3 protein controls B-chronic lymphocytic leukaemia cell apoptosis. Cell Death Differ. 10, 383–385 (2003).

    Article  CAS  Google Scholar 

  • Ammirante, M. et al. IKKγ protein is a target of BAG3 regulatory activity in human tumor growth. Proc. Natl Acad. Sci. USA 107, 7497–7502 (2010).

    Article  CAS  Google Scholar 

  • Eltoukhy, A. A., Chen, D., Albi, C. A., Langer, R. & Anderson, D. G. Degradable terpolymers with alkyl side chains demonstrate enhanced gene delivery potency and nanoparticle stability. Adv. Mater. 25, 1487–1493 (2013).

    Article  CAS  Google Scholar 

  • Rui, Y. et al. High-throughput and high-content bioassay enables tuning of polyester nanoparticles for cellular uptake, endosomal escape, and systemic in vivo delivery of mRNA. Sci. Adv. 8, eabk2855 (2022).

    Article  CAS  Google Scholar 

  • Zha, M. et al. An ester-substituted semiconducting polymer with efficient nonradiative decay enhances NIR-II photoacoustic performance for monitoring of tumor growth. Angew. Chem. Int. Ed. 59, 23268–23276 (2020).

    Article  CAS  Google Scholar 

  • Banerjee, R., Tyagi, P., Li, S. & Huang, L. Anisamide-targeted stealth liposomes: a potent carrier for targeting doxorubicin to human prostate cancer cells. Int. J. Cancer 112, 693–700 (2004).

    Article  CAS  Google Scholar 

  • Chen, Y. et al. Delivery of CRISPR/Cas9 plasmids by cationic gold nanorods: impact of the aspect ratio on genome editing and treatment of hepatic fibrosis. Chem. Mater. 33, 81–91 (2021).

    Article  CAS  Google Scholar 

  • Li, N. et al. Chimeric antigen receptor-modified T cells redirected to EphA2 for the immunotherapy of non-small cell lung cancer. Transl. Oncol. 11, 11–17 (2018).

    Article  Google Scholar 

  • Chen, X., Chen, Y., Xin, H., Wan, T. & Ping, Y. Near-infrared optogenetic engineering of photothermal nanoCRISPR for programmable genome editing. Proc. Natl Acad. Sci. USA 117, 2395–2405 (2020).

    Article  CAS  Google Scholar 

  • Chen, Y., Yan, X. & Ping, Y. Optical manipulation of CRISPR/Cas9 functions: from ultraviolet to near-infrared light. ACS Mater. Lett. 2, 644–653 (2020).

    Article  CAS  Google Scholar 

  • Zhang, W., He, M., Huang, G. & He, J. A comparison of ultrasound-guided high intensity focused ultrasound for the treatment of uterine fibroids in patients with an anteverted uterus and a retroverted uterus. Int. J. Hyperther. 32, 623–629 (2016).

    Article  Google Scholar 

  • Klichinsky, M. et al. Human chimeric antigen receptor macrophages for cancer immunotherapy. Nat. Biotechnol. 38, 947–953 (2020).

    Article  CAS  Google Scholar 

  • Guo, Y. et al. Metabolic reprogramming of terminally exhausted CD8+ T cells by IL-10 enhances anti-tumor immunity. Nat. Immunol. 22, 746–756 (2021).

    Article  CAS  Google Scholar 

  • Etxeberria, I. et al. Intratumor adoptive transfer of IL-12 mRNA transiently engineered antitumor CD8+ T cells. Cancer Cell 36, 613–629 (2019).

    Article  CAS  Google Scholar 

  • Singh, N. et al. Antigen-independent activation enhances the efficacy of 4-1BB-costimulated CD22 CAR T cells. Nat. Med. 27, 842–850 (2021).

    Article  CAS  Google Scholar 

  • Etxeberria, I. et al. Engineering bionic T cells: signal 1, signal 2, signal 3, reprogramming and the removal of inhibitory mechanisms. Cell. Mol. Immunol. 17, 576–586 (2020).

    Article  CAS  Google Scholar 

  • Rostamian, H. et al. A metabolic switch to memory CAR T cells: implications for cancer treatment. Cancer Lett. 500, 107–118 (2021).

    Article  CAS  Google Scholar 

  • Korde, L. A., Somerfield, M. R. & Hershman, D. L. Use of immune checkpoint inhibitor pembrolizumab in the treatment of high-risk, early-stage triple-negative breast cancer: ASCO guideline rapid recommendation update. J. Clin. Oncol. 39, 1696–1698 (2021).

    Google Scholar 

  • Yoshida, K., Yamaguchi, K., Okumura, N., Tanahashi, T. & Kodera, Y. Is conversion therapy possible in stage IV gastric cancer: the proposal of new biological categories of classification. Gastric Cancer 19, 329–338 (2016).

    Article  Google Scholar 

  • Song, T., Lang, M., Ren, S., Gan, L. & Lu, W. The past, present and future of conversion therapy for liver cancer. Am. J. Cancer Res. 11, 4711–4724 (2021).

    CAS  Google Scholar 

  • Sun, H. & Zhu, X. Downstaging conversion therapy in patients with initially unresectable advanced hepatocellular carcinoma: an overview. Front. Oncol. 11, 772195 (2021).

    Article  Google Scholar 

  • Kishton, R. J., Lynn, R. C. & Restifo, N. P. Strength in numbers: identifying neoantigen targets for cancer immunotherapy. Cell 184, 5031–5052 (2021).

    Google Scholar 

  • Storz, P. & Crawford, H. C. Carcinogenesis of pancreatic ductal adenocarcinoma. Gastroenterology 158, 2072–2081 (2020).

    Article  CAS  Google Scholar 

  • Hosein, A. N., Dougan, S. K., Aguirre, A. J. & Maitra, A. Translational advances in pancreatic ductal adenocarcinoma therapy. Nat. Cancer 3, 272–286 (2022).

    Article  Google Scholar 

  • Xue, G. et al. Adoptive cell therapy with tumor-specific Th9 cells induces viral mimicry to eliminate antigen-loss-variant tumor cells. Cancer Cell 39, 1610–1622 (2021).

    Article  CAS  Google Scholar 

  • Hirabayashi, K. et al. Dual targeting CAR-T cells with optimal costimulation and metabolic fitness enhance antitumor activity and prevent escape in solid tumors. Nat. Cancer 2, 904–918 (2021).

    Article  CAS  Google Scholar 

  • Bergers, G. & Fendt, S. The metabolism of cancer cells during metastasis. Nat. Rev. Cancer 21, 162–180 (2021).

    Article  CAS  Google Scholar 

  • Time Stamp:

    More from Nature Nanotechnology