High-energy all-solid-state lithium batteries enabled by Co-free LiNiO2 cathodes with robust outside-in structures - Nature Nanotechnology

High-energy all-solid-state lithium batteries enabled by Co-free LiNiO2 cathodes with robust outside-in structures – Nature Nanotechnology

Source Node: 2922332
  • Duffner, F. et al. Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure. Nat. Energy 6, 123–134 (2021).

    Article  CAS  Google Scholar 

  • Wang, L., Chen, B., Ma, J., Cui, G. & Chen, L. Reviving lithium cobalt oxide-based lithium secondary batteries—toward a higher energy density. Chem. Soc. Rev. 47, 6505–6602 (2018).

    Article  CAS  Google Scholar 

  • Ryu, H. H., Sun, H. H., Myung, S. T., Yoon, C. S. & Sun, Y. K. Reducing cobalt from lithium-ion batteries for the electric vehicle era. Energy Environ. Sci. 14, 844–852 (2021).

    Article  CAS  Google Scholar 

  • Zeng, A. et al. Battery technology and recycling alone will not save the electric mobility transition from future cobalt shortages. Nat. Commun. 13, 1341 (2022).

    Article  CAS  Google Scholar 

  • Voronina, N., Sun, Y. K. & Myung, S. T. Co-free layered cathode materials for high energy density lithium-ion batteries. ACS Energy Lett. 5, 1814–1824 (2020).

    Article  CAS  Google Scholar 

  • Bianchini, M., Roca-Ayats, M., Hartmann, P., Brezesinski, T. & Janek, J. There and back again—the journey of LiNiO2 as a cathode active material. Angew. Chem. Int. Ed. 58, 10434–10458 (2019).

    Article  CAS  Google Scholar 

  • Yu, L. et al. High nickel and no cobalt—the pursuit of next-generation layered oxide cathodes. ACS Appl. Mater. Interfaces 14, 23056–23065 (2022).

    Article  CAS  Google Scholar 

  • Wang, C. Y. et al. Resolving atomic-scale phase transformation and oxygen loss mechanism in ultrahigh-nickel layered cathodes for cobalt-free lithium-ion batteries. Matter 4, 2013–2026 (2021).

    Article  CAS  Google Scholar 

  • Wang, M. J., Kazyak, E., Dasgupta, N. P. & Sakamoto, J. Transitioning solid-state batteries from lab to market: linking electro-chemo-mechanics with practical considerations. Joule 5, 1371–1390 (2021).

    Article  CAS  Google Scholar 

  • Wang, C. H. et al. All-solid-state lithium batteries enabled by sulfide electrolytes: from fundamental research to practical engineering design. Energy Environ. Sci. 14, 2577–2619 (2021).

    Article  CAS  Google Scholar 

  • Zhou, L. D. et al. High areal capacity, long cycle life 4 V ceramic all-solid-state Li-ion batteries enabled by chloride solid electrolytes. Nat. Energy 7, 83–93 (2022).

    Article  CAS  Google Scholar 

  • Wang, C. et al. A universal wet-chemistry synthesis of solid-state halide electrolytes for all-solid-state lithium-metal batteries. Sci. Adv. 7, eabh1896 (2021).

    Article  CAS  Google Scholar 

  • Zhou, L. D. et al. A new halospinel superionic conductor for high-voltage all solid state lithium batteries. Energy Environ. Sci. 13, 2056–2063 (2020).

    Article  CAS  Google Scholar 

  • Yin, Y. C. et al. A LaCl3-based lithium superionic conductor compatible with lithium metal. Nature 616, 77–83 (2023).

    Article  CAS  Google Scholar 

  • Deng, S. X. et al. Eliminating the detrimental effects of conductive agents in sulfide-based solid-state batteries. ACS Energy Lett. 5, 1243–1251 (2020).

    Article  CAS  Google Scholar 

  • Wang, L. L. et al. Bidirectionally compatible buffering layer enables highly stable and conductive interface for 4.5 V sulfide-based all-solid-state lithium batteries. Adv. Energy Mater. 11, 2100881 (2021).

    Article  CAS  Google Scholar 

  • Culver, S. P., Koerver, R., Zeier, W. G. & Janek, J. On the functionality of coatings for cathode active materials in thiophosphate-based all-solid-state batteries. Adv. Energy Mater. 9, 1900626 (2019).

    Article  Google Scholar 

  • Ma, Y. et al. Cycling performance and limitations of LiNiO2 in solid-state batteries. ACS Energy Lett. 6, 3020–3028 (2021).

    Article  CAS  Google Scholar 

  • Lee, Y.-G. et al. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes. Nat. Energy 5, 299–308 (2020).

    Article  CAS  Google Scholar 

  • Zhang, W. et al. Interfacial processes and influence of composite cathode microstructure controlling the performance of all-solid-state lithium batteries. ACS Appl. Mater. Interfaces 9, 17835–17845 (2017).

    Article  CAS  Google Scholar 

  • Cao, D. et al. Stable thiophosphate-based all-solid-state lithium batteries through conformally interfacial nanocoating. Nano Lett. 20, 1483–1490 (2020).

    Article  CAS  Google Scholar 

  • Wang, Y. et al. Stable Ni-rich layered oxide cathode for sulfide-based all-solid-state lithium battery. eScience 2, 537–545 (2022).

    Article  Google Scholar 

  • Zhao, Y., Zheng, K. & Sun, X. L. Addressing interfacial issues in liquid-based and solid-state batteries by atomic and molecular layer deposition. Joule 2, 2583–2604 (2018).

    Article  CAS  Google Scholar 

  • Chen, L. et al. Mechanism for Al2O3 atomic layer deposition on LiMn2O4 from in situ measurements and ab initio calculations. Chem 4, 2418–2435 (2018).

    Article  CAS  Google Scholar 

  • Warburton, R. E., Young, M. J., Letourneau, S., Elam, J. W. & Greeley, J. Descriptor-based analysis of atomic layer deposition mechanisms on spinel LiMn2O4 lithium-ion battery cathodes. Chem. Mater. 32, 1794–1806 (2020).

    Article  CAS  Google Scholar 

  • Wang, L. et al. A novel bifunctional self-stabilized strategy enabling 4.6 V LiCoO2 with excellent long-term cyclability and high-rate capability. Adv. Sci. 6, 1900355 (2019).

    Article  Google Scholar 

  • Huang, H. et al. Unusual double ligand holes as catalytic active sites in LiNiO2. Nat. Commun. 14, 2112 (2023).

    Article  CAS  Google Scholar 

  • Xu, J. et al. Understanding the degradation mechanism of lithium nickel oxide cathodes for Li-ion batteries. ACS Appl. Mater. Interfaces 8, 31677–31683 (2016).

    Article  CAS  Google Scholar 

  • Li, N. et al. Unraveling the cationic and anionic redox reactions in a conventional layered oxide cathode. ACS Energy Lett. 4, 2836–2842 (2019).

    Article  CAS  Google Scholar 

  • Zheng, X. et al. Theory-driven design of high-valence metal sites for water oxidation confirmed using in situ soft X-ray absorption. Nat. Chem. 10, 149–154 (2018).

    Article  CAS  Google Scholar 

  • Guo, H. et al. Antiferromagnetic correlations in the metallic strongly correlated transition metal oxide LaNiO3. Nat. Commun. 9, 43 (2018).

    Article  CAS  Google Scholar 

  • Xu, J. et al. Elucidating anionic oxygen activity in lithium-rich layered oxides. Nat. Commun. 9, 947 (2018).

    Article  Google Scholar 

  • Mu, L. et al. Structural and electrochemical impacts of Mg/Mn dual dopants on the LiNiO2 cathode in Li-metal batteries. ACS Appl. Mater. Interfaces 12, 12874–12882 (2020).

    Article  CAS  Google Scholar 

  • Green, R. J., Haverkort, M. W. & Sawatzky, G. A. Bond disproportionation and dynamical charge fluctuations in the perovskite rare-earth nickelates. Phys. Rev. B 94, 195127 (2016).

    Article  Google Scholar 

  • Agrestini, S. et al. Nature of the magnetism of iridium in the double perovskite Sr2CoIrO6. Phys. Rev. B 100, 014443 (2019).

    Article  CAS  Google Scholar 

  • Han, M. et al. Eliminating transition metal migration and anionic redox to understand voltage hysteresis of lithium-rich layered oxides. Adv. Energy Mater. 10, 1903634 (2020).

    Article  CAS  Google Scholar 

  • Zhang, Y. B. et al. Self-stabilized LiNi0.8Mn0.1Co0.1O2 in thiophosphate-based all-solid-state batteries through extra LiOH. Energy Storage Mater. 41, 505–514 (2021).

    Article  Google Scholar 

  • Kim, A. Y. et al. Stabilizing effect of a hybrid surface coating on a Ni-rich NCM cathode material in all-solid-state batteries. Chem. Mater. 31, 9664–9672 (2019).

    Article  CAS  Google Scholar 

  • Levartovsky, Y. et al. Enhancement of structural, electrochemical, and thermal properties of Ni‐rich LiNi0.85Co0.1Mn0.05O2 cathode materials for Li‐ion batteries by Al and Ti doping. Batter. Supercaps 4, 221–231 (2020).

    Article  Google Scholar 

  • Fang, R., Liu, Y., Li, Y., Manthiram, A. & Goodenough, J. B. Achieving stable all-solid-state lithium-metal batteries by tuning the cathode–electrolyte interface and ionic/electronic transport within the cathode. Mater. Today 64, 52–60 (2023).

    Article  CAS  Google Scholar 

  • Kim, U. H. et al. Microstructure- and interface-modified Ni-rich cathode for high-energy-density all-solid-state lithium batteries. ACS Energy Lett. 8, 809–817 (2023).

    Article  CAS  Google Scholar 

  • Zhao, F. P. et al. Tuning bifunctional interface for advanced sulfide-based all-solid-state batteries. Energy Storage Mater. 33, 139–146 (2020).

    Article  Google Scholar 

  • Ma, Y. et al. Advanced nanoparticle coatings for stabilizing layered Ni-rich oxide cathodes in solid-state batteries. Adv. Funct. Mater. 32, 2111829 (2022).

    Article  CAS  Google Scholar 

  • Wang, P. et al. Electro-chemo-mechanical issues at the interfaces in solid-state lithium metal batteries. Adv. Funct. Mater. 29, 1900950 (2019).

    Article  Google Scholar 

  • Tallman, K. R. et al. Nickel-rich nickel manganese cobalt (NMC622) cathode lithiation mechanism and extended cycling effects using operando X-ray absorption spectroscopy. J. Phys. Chem. C. 125, 58–73 (2020).

    Article  Google Scholar 

  • Zak, J. J., Kim, S. S., Laskowski, F. A. L. & See, K. A. An exploration of sulfur redox in lithium battery cathodes. J. Am. Chem. Soc. 144, 10119–10132 (2022).

    Article  CAS  Google Scholar 

  • Walther, F. et al. Visualization of the interfacial decomposition of composite cathodes in argyrodite-based all-solid-state batteries using time-of-flight secondary-ion mass spectrometry. Chem. Mater. 31, 3745–3755 (2019).

    Article  CAS  Google Scholar 

  • Deng, S. X. et al. Insight into cathode surface to boost the performance of solid-state batteries. Energy Storage Mater. 35, 661–668 (2021).

    Article  Google Scholar 

  • Wu, Y. Q. et al. Highly reversible Li2RuO3 cathodes in sulfide-based all solid-state lithium batteries. Energy Environ. Sci. 15, 3470–3482 (2022).

    Article  CAS  Google Scholar 

  • Strauss, F. et al. Li2ZrO3-coated NCM622 for application in inorganic solid-state batteries: role of surface carbonates in the cycling performance. ACS Appl. Mater. Interfaces 12, 57146–57154 (2020).

    Article  CAS  Google Scholar 

  • Auvergniot, J. et al. Interface stability of argyrodite Li6PS5Cl toward LiCoO2, LiNi1/3Co1/3Mn1/3O2, and LiMn2O4 in bulk all-solid-state batteries. Chem. Mater. 29, 3883–3890 (2017).

    Article  CAS  Google Scholar 

  • Gao, X. et al. Solid-state lithium battery cathodes operating at low pressures. Joule 6, 636–646 (2022).

    Article  CAS  Google Scholar 

  • Wu, F., Maier, J. & Yu, Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem. Soc. Rev. 49, 1569–1614 (2020).

    Article  CAS  Google Scholar 

  • Luo, S. et al. Growth of lithium-indium dendrites in all-solid-state lithium-based batteries with sulfide electrolytes. Nat. Commun. 12, 6968 (2021).

    Article  CAS  Google Scholar 

  • Wang, L. et al. In-situ visualization of the space-charge-layer effect on interfacial lithium-ion transport in all-solid-state batteries. Nat. Commun. 11, 5889 (2020).

    Article  CAS  Google Scholar 

  • Lutterotti, L. Total pattern fitting for the combined size–strain–stress–texture determination in thin film diffraction. Nucl. Instrum. Methods Phys. Res. B 268, 334–340 (2010).

    Article  CAS  Google Scholar 

  • Cowan, R. D. The Theory of Atomic Structure and Spectra (University of California Press, 1981).

  • Slater, J. C. & Koster, G. F. Simplified LCAO method for the periodic potential problem. Phys. Rev. 94, 1498–1524 (1954).

    Article  CAS  Google Scholar 

  • Time Stamp:

    More from Nature Nanotechnology