Real-space observation of a two-dimensional electron gas at semiconductor heterointerfaces

Real-space observation of a two-dimensional electron gas at semiconductor heterointerfaces

Source Node: 2023940
  • Ambacher, O. et al. Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures. J. Appl. Phys. 87, 334–344 (2000).

    Article  CAS  Google Scholar 

  • Ambacher, O. et al. Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures. J. Appl. Phys. 85, 3222–3233 (1999).

    Article  CAS  Google Scholar 

  • Ohta, H. et al. Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3. Nat. Mater. 6, 129–134 (2007).

    Article  CAS  Google Scholar 

  • Ferain, I., Colinge, C. A. & Colinge, J.-P. Multigate transistors as the future of classical metal–oxide–semiconductor field-effect transistors. Nature 479, 310–316 (2011).

    Article  CAS  Google Scholar 

  • Syaranamual, G. J. et al. Role of two-dimensional electron gas (2DEG) in AlGaN/GaN high electron mobility transistor (HEMT) ON-state degradation. Microelectron. Reliab. 64, 589–593 (2016).

    Article  CAS  Google Scholar 

  • Kaushik, P. K., Singh, S. K., Gupta, A., Basu, A. & Chang, E. Y. Impact of surface states and aluminum mole fraction on surface potential and 2DEG in AlGaN/GaN HEMTs. Nanoscale Res. Lett. 16, 159 (2021).

    Article  CAS  Google Scholar 

  • Smorchkova, I. P. et al. Polarization-induced charge and electron mobility in AlGaN/GaN heterostructures grown by plasma-assisted molecular-beam epitaxy. J. Appl. Phys. 86, 4520–4526 (1999).

    Article  CAS  Google Scholar 

  • Ibbetson, J. P. et al. Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors. Appl. Phys. Lett. 77, 250–252 (2000).

    Article  CAS  Google Scholar 

  • Zheng, Z. et al. Gallium nitride-based complementary logic integrated circuits. Nat. Electron. 4, 595–603 (2021).

    Article  CAS  Google Scholar 

  • Joh, J. & del Alamo, J. A. A current-transient methodology for trap analysis for GaN high electron mobility transistors. IEEE Trans. Electron Devices 58, 132–140 (2011).

    Article  CAS  Google Scholar 

  • Pearton, S. J., Ren, F., Patrick, E., Law, M. E. & Polyakov, A. Y. Review—ionizing radiation damage effects on GaN devices. ECS J. Solid State Sci. Technol. 5, Q35–Q60 (2016).

    Article  CAS  Google Scholar 

  • Nakagami, K., Ohno, Y., Kishimoto, S., Maezawa, K. & Mizutani, T. Surface potential measurements of AlGaN/GaN high-electron-mobility transistors by Kelvin probe force microscopy. Appl. Phys. Lett. 85, 6028–6029 (2004).

    Article  CAS  Google Scholar 

  • Masuda, H., Ishida, N., Ogata, Y., Ito, D. & Fujita, D. Internal potential mapping of charged solid-state-lithium ion batteries using in situ Kelvin probe force microscopy. Nanoscale 9, 893–898 (2017).

    Article  CAS  Google Scholar 

  • Cao, Y., Pomeroy, J. W., Uren, M. J., Yang, F. & Kuball, M. Electric field mapping of wide-bandgap semiconductor devices at a submicrometre resolution. Nat. Electron. 4, 478–485 (2021).

    Article  CAS  Google Scholar 

  • Shibata, N. et al. Differential phase-contrast microscopy at atomic resolution. Nat. Phys. 8, 611–615 (2012).

    Article  CAS  Google Scholar 

  • Müller-Caspary, K. et al. Electrical polarization in AlN/GaN nanodisks measured by momentum-resolved 4D scanning transmission electron microscopy. Phys. Rev. Lett. 122, 106102 (2019).

    Article  Google Scholar 

  • Song, K. et al. Direct imaging of the electron liquid at oxide interfaces. Nat. Nanotechnol. 13, 198–203 (2018).

    Article  CAS  Google Scholar 

  • Wolf, D. et al. Unveiling the three-dimensional magnetic texture of skyrmion tubes. Nat. Nanotechnol. 17, 250–255 (2022).

    Article  CAS  Google Scholar 

  • Mawson, T. et al. Suppressing dynamical diffraction artefacts in differential phase contrast scanning transmission electron microscopy of long-range electromagnetic fields via precession. Ultramicroscopy 219, 113097 (2020).

    Article  CAS  Google Scholar 

  • Haas, B., Rouvière, J.-L., Boureau, V., Berthier, R. & Cooper, D. Direct comparison of off-axis holography and differential phase contrast for the mapping of electric fields in semiconductors by transmission electron microscopy. Ultramicroscopy 198, 58–72 (2019).

    Article  CAS  Google Scholar 

  • Yamamoto, K., Anada, S., Sato, T., Yoshimoto, N. & Hirayama, T. Phase-shifting electron holography for accurate measurement of potential distributions in organic and inorganic semiconductors. Microscopy 70, 24–38 (2021).

    Article  CAS  Google Scholar 

  • Marino, F. A., Cullen, D. A., Smith, D. J., McCartney, M. R. & Saraniti, M. Simulation of polarization charge on AlGaN/GaN high electron mobility transistors: comparison to electron holography. J. Appl. Phys. 107, 054516 (2010).

    Article  Google Scholar 

  • Wu, Z. H. et al. Mapping the electrostatic potential across AlGaN/AlN/GaN heterostructures using electron holography. Appl. Phys. Lett. 90, 032101 (2007).

    Article  Google Scholar 

  • Kohno, Y., Nakamura, A., Morishita, S. & Shibata, N. Development of tilt-scan system for differential phase contrast scanning transmission electron microscopy. Microscopy 71, 111–116 (2022).

    Article  Google Scholar 

  • Toyama, S. et al. Quantitative electric field mapping in semiconductor heterostructures via tilt-scan averaged DPC STEM. Ultramicroscopy 238, 113538 (2022).

    Article  CAS  Google Scholar 

  • Lippmann, B. A. Ehrenfest’s theorem and scattering theory. Phys. Rev. Lett. 15, 11–14 (1965).

    Article  Google Scholar 

  • Close, R., Chen, Z., Shibata, N. & Findlay, S. D. Towards quantitative, atomic-resolution reconstruction of the electrostatic potential via differential phase contrast using electrons. Ultramicroscopy 159, 124–137 (2015).

    Article  CAS  Google Scholar 

  • Seki, T. et al. Quantitative electric field mapping in thin specimens using a segmented detector: revisiting the transfer function for differential phase contrast. Ultramicroscopy 182, 258–263 (2017).

    Article  CAS  Google Scholar 

  • Kohno, Y., Seki, T., Findlay, S. D., Ikuhara, Y. & Shibata, N. Real-space visualization of intrinsic magnetic fields of an antiferromagnet. Nature 602, 234–239 (2022).

    Article  CAS  Google Scholar 

  • Sánchez-Santolino, G. et al. Probing the internal atomic charge density distributions in real space. ACS Nano 12, 8875–8881 (2018).

    Article  Google Scholar 

  • Ishikawa, R. et al. Direct electric field imaging of graphene defects. Nat. Commun. 9, 3878 (2018).

    Article  Google Scholar 

  • Gao, W. et al. Real-space charge-density imaging with sub-ångström resolution by four-dimensional electron microscopy. Nature 575, 480–484 (2019).

    Article  CAS  Google Scholar 

  • Trellakis, A. et al. The 3D nanometer device project nextnano: concepts, methods, results. J. Comput. Electron. 5, 285–289 (2006).

    Article  Google Scholar 

  • Birner, S. et al. nextnano: general purpose 3-D simulations. IEEE Trans. Electron Devices 54, 2137–2142 (2007).

    Article  CAS  Google Scholar 

  • Schowalter, M., Rosenauer, A., Lamoen, D., Kruse, P. & Gerthsen, D. Ab initio computation of the mean inner Coulomb potential of wurtzite-type semiconductors and gold. Appl. Phys. Lett. 88, 232108 (2006).

    Article  Google Scholar 

  • Jain, S. C., Willander, M., Narayan, J. & Overstraeten, R. V. III–Nitrides: growth, characterization, and properties. J. Appl. Phys. 87, 965–1006 (2000).

    Article  CAS  Google Scholar 

  • Ando, T., Fowler, A. B. & Stern, F. Electronic properties of two-dimensional systems. Rev. Mod. Phys. 54, 437–672 (1982).

    Article  CAS  Google Scholar 

  • Ando, T. Self-consistent results for a GaAs/AlxGa1–xAs heterojunciton. II. Low temperature mobility. J. Phys. Soc. Jpn 51, 3900–3907 (1982).

    Article  CAS  Google Scholar 

  • Quang, D. N., Tuoc, V. N., Tung, N. H., Minh, N. V. & Phong, P. N. Roughness-induced mechanisms for electron scattering in wurtzite group-III-nitride heterostructures. Phys. Rev. B 72, 245303 (2005).

    Article  Google Scholar 

  • Quang, D. N. et al. Quantum and transport lifetimes due to roughness-induced scattering of a two-dimensional electron gas in wurtzite group-III-nitride heterostructures. Phys. Rev. B 74, 205312 (2006).

    Article  Google Scholar 

  • Kawahara, K. et al. Unique fitting of electrochemical impedance spectra by random walk Metropolis Hastings algorithm. J. Power Sources 403, 184–191 (2018).

    Article  CAS  Google Scholar 

  • Butté, R. et al. Current status of AlInN layers lattice-matched to GaN for photonics and electronics. J. Phys. D 40, 6328–6344 (2007).

    Article  Google Scholar 

  • Crespo, A. et al. High-power Ka-band performance of AlInN/GaN HEMT with 9.8-nm-thin barrier. IEEE Electron Device Lett. 31, 2–4 (2010).

    Article  CAS  Google Scholar 

  • Py, M. A., Lugani, L., Taniyasu, Y., Carlin, J.-F. & Grandjean, N. Shallow donor and deep DX-like center in InAlN layers nearly lattice-matched to GaN. Phys. Rev. B 90, 115208 (2014).

    Article  Google Scholar 

  • Kappers, M. J., Zhu, T., Sahonta, S. ‐L., Humphreys, C. J. & Oliver, R. A. SCM and SIMS investigations of unintentional doping in III‐nitrides. Phys. Status Solidi C 12, 403–407 (2015).

    Article  CAS  Google Scholar 

  • Chung, R. B. et al. Growth study and impurity characterization of AlxIn1−xN grown by metal organic chemical vapor deposition. J. Cryst. Growth 324, 163–167 (2011).

    Article  CAS  Google Scholar 

  • Egerton, R. F. Electron Energy-Loss Spectroscopy in the Electron Microscope (Springer Science & Business Media, 2011).

  • Shibata, N. et al. Atomic resolution electron microscopy in a magnetic field free environment. Nat. Commun. 10, 2308 (2019).

    Article  CAS  Google Scholar 

  • Morishita, S. et al. Attainment of 40.5 pm spatial resolution using 300 kV scanning transmission electron microscope equipped with fifth-order aberration corrector. Microscopy 67, 46–50 (2018).

    Article  CAS  Google Scholar 

  • Tsuda, K. & Tanaka, M. Refinement of crystal structural parameters using two-dimensional energy-filtered CBED patterns. Acta Crystallogr. A 55, 939–954 (1999).

    Article  CAS  Google Scholar 

  • Time Stamp:

    More from Nature Nanotechnology