High-throughput manufacturing of epitaxial membranes from a single wafer by 2D materials-based layer transfer process

High-throughput manufacturing of epitaxial membranes from a single wafer by 2D materials-based layer transfer process

Source Node: 2528275
  • Bae, S. H. et al. Integration of bulk materials with two-dimensional materials for physical coupling and applications. Nat. Mater. 18, 550–560 (2019).

    Article  CAS  Google Scholar 

  • Kum, H. S. et al. Heterogeneous integration of single-crystalline complex-oxide membranes. Nature 578, 75–81 (2020).

    Article  CAS  Google Scholar 

  • Cheng, C. W. et al. Epitaxial lift-off process for gallium arsenide substrate reuse and flexible electronics. Nat. Commun. 4, 1–7 (2013).

    Article  Google Scholar 

  • Wu, F. L., Ou, S. L., Horng, R. H. & Kao, Y. C. Improvement in separation rate of epitaxial lift-off by hydrophilic solvent for GaAs solar cell applications. Sol. Energy Mater. Sol. Cells 122, 233–240 (2014).

    Article  CAS  Google Scholar 

  • Wong, W. S., Sands, T. & Cheung, N. W. Damage-free separation of GaN thin films from sapphire substrates. Appl. Phys. Lett. 72, 599 (1998).

    Article  CAS  Google Scholar 

  • Raj, V. et al. Layer transfer by controlled spalling. J. Phys. D 46, 152002 (2013).

    Article  Google Scholar 

  • Bedell, S. W., Lauro, P., Ott, J. A., Fogel, K. & Sadana, D. K. Layer transfer of bulk gallium nitride by controlled spalling. J. Appl. Phys. 122, 025103 (2017).

    Article  Google Scholar 

  • Kobayashi, Y., Kumakura, K., Akasaka, T. & Makimoto, T. Layered boron nitride as a release layer for mechanical transfer of GaN-based devices. Nature 484, 223–227 (2012).

    Article  CAS  Google Scholar 

  • Kim, Y. et al. Remote epitaxy through graphene enables two-dimensional material-based layer transfer. Nature 544, 340–343 (2017).

    Article  CAS  Google Scholar 

  • Kim, H. et al. Graphene nanopattern as a universal epitaxy platform for single-crystal membrane production and defect reduction. Nat. Nanotechnol. 17, 1054–1059 (2022).

    Article  CAS  Google Scholar 

  • Kum, H. et al. Epitaxial growth and layer-transfer techniques for heterogeneous integration of materials for electronic and photonic devices. Nat. Electron. 2, 439–450 (2019).

    Article  CAS  Google Scholar 

  • Kong, W. et al. Polarity governs atomic interaction through two-dimensional materials. Nat. Mater. 17, 999–1004 (2018).

    Article  CAS  Google Scholar 

  • Bae, S. H. et al. Graphene-assisted spontaneous relaxation towards dislocation-free heteroepitaxy. Nat. Nanotechnol. 15, 272–276 (2020).

    Article  CAS  Google Scholar 

  • Kim, H. et al. Remote epitaxy. Nat. Rev. Methods Prim. 2:40, 1–21 (2022).

    Google Scholar 

  • Park, J.-H. et al. Influence of temperature-dependent substrate decomposition on graphene for separable GaN growth. Adv. Mater. Interfaces 6, 1900821 (2019).

    Article  CAS  Google Scholar 

  • Koukitu, A., Mayumi, M. & Kumagai, Y. Surface polarity dependence of decomposition and growth of GaN studied using in situ gravimetric monitoring. J. Cryst. Growth 246, 230–236 (2002).

    Article  CAS  Google Scholar 

  • Li, P., Xiong, T., Wang, L., Sun, S. & Chen, C. Facile Au-assisted epitaxy of nearly strain-free GaN films on sapphire substrates. RSC Adv. 10, 2096–2103 (2020).

    Article  CAS  Google Scholar 

  • Kim, G. et al. Growth of high-crystalline, single-layer hexagonal boron nitride on recyclable platinum foil. Nano Lett. 13, 1834–1839 (2013).

    Article  CAS  Google Scholar 

  • Jang, A. R. et al. Wafer-scale and wrinkle-free epitaxial growth of single-orientated multilayer hexagonal boron nitride on sapphire. Nano Lett. 16, 3360–3366 (2016).

    Article  CAS  Google Scholar 

  • Bepete, G., Voiry, D., Chhowalla, M., Chiguvare, Z. & Coville, N. J. Incorporation of small BN domains in graphene during CVD using methane, boric acid and nitrogen gas. Nanoscale 5, 6552–6557 (2013).

    Article  CAS  Google Scholar 

  • Zhang, B. et al. Low-temperature chemical vapor deposition growth of graphene from toluene on electropolished copper foils. ACS Nano 6, 2471–2476 (2012).

    Article  CAS  Google Scholar 

  • Toh, C. T. et al. Synthesis and properties of free-standing monolayer amorphous carbon. Nature 577, 199–203 (2020).

    Article  CAS  Google Scholar 

  • Joo, W. J. et al. Realization of continuous Zachariasen carbon monolayer. Sci. Adv. 3, e1601821 (2017).

    Article  Google Scholar 

  • Zhang, Y. T. et al. Structure of amorphous two-dimensional materials: elemental monolayer amorphous carbon versus binary monolayer amorphous boron nitride. Nano Lett. 22, 8018–8024 (2022).

    Article  CAS  Google Scholar 

  • Jung, D. et al. Low threading dislocation density GaAs growth on on-axis GaP/Si (001). J. Appl. Phys. 122, 225703 (2017).

    Article  Google Scholar 

  • Shang, C. et al. A pathway to thin GaAs virtual substrate on on-axis Si (001) with ultralow threading dislocation density. Physica Status Solidi A 218, 2000402 (2021).

    Article  CAS  Google Scholar 

  • Hool, R. D. et al. Challenges of relaxed n-type GaP on Si and strategies to enable low threading dislocation density. J. Appl. Phys. 130, 243104 (2021).

    Article  CAS  Google Scholar 

  • Liu, A. Y. et al. High performance continuous wave 1.3 μm quantum dot lasers on silicon. Appl. Phys. Lett. 104, 041104 (2014).

    Article  Google Scholar 

  • Chen, S. et al. Electrically pumped continuous-wave III–V quantum dot lasers on silicon. Nat. Photonics 10, 307–311 (2016).

    Article  Google Scholar 

  • Liang, D., Wei, T., Wang, J. & Li, J. Quasi van der Waals epitaxy nitride materials and devices on two dimension materials. Nano Energy 69, 104463 (2020).

    Article  CAS  Google Scholar 

  • Kim, H. et al. Role of transferred graphene on atomic interaction of GaAs for remote epitaxy. J. Appl. Phys. 130, 174901 (2021).

    Article  CAS  Google Scholar 

  • Kim, H. et al. Impact of 2D–3D heterointerface on remote epitaxial interaction through graphene. ACS Nano 15, 10587–10596 (2021).

    Article  CAS  Google Scholar 

  • Yoon, J. et al. GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies. Nature 465, 329–333 (2010).

    Article  CAS  Google Scholar 

  • Hong, S. et al. Ultralow-dielectric-constant amorphous boron nitride. Nature 582, 511–514 (2020).

    Article  CAS  Google Scholar 

  • Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    Article  CAS  Google Scholar 

  • Zhang, Y., Huang, L. & Shi, Y. Silica glass toughened by consolidation of glassy nanoparticles. Nano Lett. 19, 5222–5228 (2019).

    Article  CAS  Google Scholar 

  • Ethier, S. & Lewis, L. J. Epitaxial growth of Si1−xGex on Si(100)2 × 1: a molecular-dynamics study. J. Mater. Res. 7, 2817–2827 (1992).

    Article  CAS  Google Scholar 

  • Bourque, A. J. & Rutledge, G. C. Empirical potential for molecular simulation of graphene nanoplatelets. J. Chem. Phys. 148, 144709 (2018).

    Article  Google Scholar 

  • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article  CAS  Google Scholar 

  • Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  • Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  Google Scholar 

  • Time Stamp:

    More from Nature Nanotechnology