Spin-dependent properties of optical modes guided by adiabatic trapping potentials in photonic Dirac metasurfaces

Spin-dependent properties of optical modes guided by adiabatic trapping potentials in photonic Dirac metasurfaces

Source Node: 2617000
  • Qiao, W. et al. Toward scalable flexible nanomanufacturing for photonic structures and devices. Adv. Mater. 28, 10353–10380 (2016).

    Article  CAS  Google Scholar 

  • Li, C. et al. Dielectric metasurfaces: from wavefront shaping to quantum platforms. Prog. Surf. Sci. 95, 100584 (2020).

    Article  CAS  Google Scholar 

  • Plotnik, Y. et al. Observation of unconventional edge states in ‘photonic graphene’. Nat. Mater. 13, 57–62 (2014).

    Article  CAS  Google Scholar 

  • Bliokh, K. Y. Weak antilocalization of ultrarelativistic fermions. Phys. Lett. A 344, 127–130 (2005).

    Article  CAS  Google Scholar 

  • Morozov, S. V. et al. Strong suppression of weak localization in graphene. Phys. Rev. Lett. 97, 016801 (2006).

    Article  CAS  Google Scholar 

  • Lu, L., Joannopoulos, J. D. & Soljačić, M. Topological photonics. Nat. Photonics 8, 821–829 (2014).

    Article  CAS  Google Scholar 

  • Wang, Z., Chong, Y., Joannopoulos, J. D. & Soljačić, M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 (2009).

    Article  CAS  Google Scholar 

  • Hafezi, M., Demler, E. A., Lukin, M. D. & Taylor, J. M. Robust optical delay lines with topological protection. Nat. Phys. 7, 907–912 (2011).

    Article  CAS  Google Scholar 

  • Cheng, X. et al. Robust reconfigurable electromagnetic pathways within a photonic topological insulator. Nat. Mater. 15, 542–548 (2016).

    Article  CAS  Google Scholar 

  • Khanikaev, A. B. & Shvets, G. Two-dimensional topological photonics. Nat. Photonics 11, 763–773 (2017).

    Article  CAS  Google Scholar 

  • Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).

    Article  CAS  Google Scholar 

  • Slobozhanyuk, A. et al. Three-dimensional all-dielectric photonic topological insulator. Nat. Photonics 11, 130–136 (2017).

    Article  CAS  Google Scholar 

  • Yang, Y. et al. Realization of a three-dimensional photonic topological insulator. Nature 565, 622–626 (2019).

    Article  CAS  Google Scholar 

  • Szameit, A., Rechtsman, M. C., Bahat-Treidel, O. & Segev, M. PT-symmetry in honeycomb photonic lattices. Phys. Rev. A 84, 021806R (2011).

    Article  Google Scholar 

  • Zhen, B. et al. Spawning rings of exceptional points out of Dirac cones. Nature 525, 354–358 (2015).

    Article  CAS  Google Scholar 

  • Leykam, D., Bliokh, K. Y., Huang, C., Chong, Y. D. & Nori, F. Edge modes, degeneracies, and topological numbers in non-Hermitian systems. Phys. Rev. Lett. 118, 040401 (2017).

    Article  Google Scholar 

  • Liu, T. et al. Second-order topological phases in non-Hermitian systems. Phys. Rev. Lett. 122, 076801 (2019).

    Article  CAS  Google Scholar 

  • Liu, Y. G. N., Jung, P. S., Parto, M., Christodoulides, D. N. & Khajavikhan, M. Gain-induced topological response via tailored long-range interactions. Nat. Phys. 17, 704–709 (2021).

    Article  CAS  Google Scholar 

  • Xia, S. et al. Nonlinear tuning of PT symmetry and non-Hermitian topological states. Science 372, 72–76 (2021).

    Article  CAS  Google Scholar 

  • Parto, M., Liu, Y. G. N., Bahari, B., Khajavikhan, M. & Christodoulides, D. N. Non-Hermitian and topological photonics: optics at an exceptional point. Nanophotonics 10, 403–423 (2020).

    Article  Google Scholar 

  • Lumer, Y., Plotnik, Y., Rechtsman, M. C. & Segev, M. Self-localized states in photonic topological insulators. Phys. Rev. Lett. 111, 243905 (2013).

    Article  Google Scholar 

  • Hadad, Y., Khanikaev, A. B. & Alù, A. Self-induced topological transitions and edge states supported by nonlinear staggered potentials. Phys. Rev. B 93, 55112 (2016).

    Article  Google Scholar 

  • Leykam, D. & Chong, Y. D. Edge solitons in nonlinear-photonic topological insulators. Phys. Rev. Lett. 117, 143901 (2016).

    Article  Google Scholar 

  • Hadad, Y., Soric, J. C., Khanikaev, A. B. & Alú, A. Self-induced topological protection in nonlinear circuit arrays. Nat. Electron. 1, 178–182 (2018).

    Article  Google Scholar 

  • D’Aguanno, G. et al. Nonlinear topological transitions over a metasurface. Phys. Rev. B 100, 214310 (2019).

    Article  Google Scholar 

  • Smirnova, D., Leykam, D., Chong, Y. & Kivshar, Y. Nonlinear topological photonics. Appl. Phys. Rev. 7, 021306 (2020).

    Article  CAS  Google Scholar 

  • Maczewsky, L. J. et al. Nonlinearity-induced photonic topological insulator. Science 370, 701–704 (2020).

    Article  CAS  Google Scholar 

  • Gao, F. et al. Topologically protected refraction of robust kink states in valley photonic crystals. Nat. Phys. 14, 140–144 (2018).

    Article  CAS  Google Scholar 

  • Liu, J. W. et al. Valley photonic crystals. Adv. Phys. X 6, 1905546 (2021).

    Google Scholar 

  • Haldane, F. D. M. & Raghu, S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett. 100, 013904 (2008).

    Article  CAS  Google Scholar 

  • Raghu, S. & Haldane, F. D. M. Analogs of quantum-Hall-effect edge states in photonic crystals. Phys. Rev. A 78, 033834 (2008).

    Article  Google Scholar 

  • Rechtsman, M. C. et al. Photonic Floquet topological insulators. Nature 496, 196–200 (2013).

    Article  CAS  Google Scholar 

  • Khanikaev, A. B. et al. Photonic topological insulators. Nat. Mater. 12, 233–239 (2013).

    Article  CAS  Google Scholar 

  • Silveirinha, M. G. Bulk-edge correspondence for topological photonic continua. Phys. Rev. B 94, 205105 (2016).

    Article  Google Scholar 

  • Bisharat, D. J. & Sievenpiper, D. F. Electromagnetic-dual metasurfaces for topological states along a 1D interface. Laser Photonics Rev. 13, 1900126 (2019).

    Article  CAS  Google Scholar 

  • Wu, L. H. & Hu, X. Scheme for achieving a topological photonic crystal by using dielectric material. Phys. Rev. Lett. 114, 223901 (2015).

    Article  Google Scholar 

  • Barik, S., Miyake, H., Degottardi, W., Waks, E. & Hafezi, M. Two-dimensionally confined topological edge states in photonic crystals. New J. Phys. 18, 113013 (2016).

    Article  Google Scholar 

  • Barik, S. et al. A topological quantum optics interface. Science 359, 666–668 (2018).

    Article  CAS  Google Scholar 

  • Gorlach, M. A. et al. Far-field probing of leaky topological states in all-dielectric metasurfaces. Nat. Commun. 9, 909 (2018).

    Article  Google Scholar 

  • Mei, J., Chen, Z. & Wu, Y. Pseudo-time-reversal symmetry and topological edge states in two-dimensional acoustic crystals. Sci. Rep. 6, 32752 (2016).

    Article  CAS  Google Scholar 

  • Smirnova, D. et al. Third-harmonic generation in photonic topological metasurfaces. Phys. Rev. Lett. 123, 103901 (2019).

    Article  CAS  Google Scholar 

  • Tworzydło, J., Groth, C. W. & Beenakker, C. W. J. Finite difference method for transport properties of massless Dirac fermions. Phys. Rev. B 78, 235438 (2008).

    Article  Google Scholar 

  • Hernández, A. R. & Lewenkopf, C. H. Finite-difference method for transport of two-dimensional massless Dirac fermions in a ribbon geometry. Phys. Rev. B 86, 155439 (2012).

    Article  Google Scholar 

  • Landau, L. D. and Lifschitz, E. M. Quantum Mechanics: Non-relativistic Theory (Pergamon, 1977).

  • Parappurath, N., Alpeggiani, F., Kuipers, L. & Verhagen, E. Direct observation of topological edge states in silicon photonic crystals: spin, dispersion, and chiral routing. Sci. Adv. 6, eaaw4137 (2020).

    Article  CAS  Google Scholar 

  • Liu, W. et al. Generation of helical topological exciton–polaritons. Science 370, 600–604 (2020).

    Article  CAS  Google Scholar 

  • Li, M. et al. Experimental observation of topological Z2 exciton–polaritons in transition metal dichalcogenide monolayers. Nat. Commun. 12, 4425 (2021).

    Article  CAS  Google Scholar 

  • Guddala, S. et al. Topological phonon–polariton funneling in midinfrared metasurfaces. Science 374, 225–227 (2021).

    Article  CAS  Google Scholar 

  • Bliokh, K. Y., Dressel, J. & Nori, F. Conservation of the spin and orbital angular momenta in electromagnetism. New J. Phys. 16, 093037 (2014).

    Article  Google Scholar 

  • Bliokh, K. Y. et al. Spin-to-orbital angular momentum conversion in focusing, scattering, and imaging systems. Opt. Express 19, 26132 (2011).

    Article  Google Scholar 

  • De Paz, M. B., Vergniory, M. G., Bercioux, D., Garciá-Etxarri, A. & Bradlyn, B. Engineering fragile topology in photonic crystals: topological quantum chemistry of light. Phys. Rev. Res. 1, 032005 (2019).

    Article  Google Scholar 

  • De Paz, M. B. et al. Energy density as a probe of band representations in photonic crystals. J. Phys. Condens. Matter 34, 314002 (2022).

    Article  Google Scholar 

  • Xiao, B. et al. Exciting reflectionless unidirectional edge modes in a reciprocal photonic topological insulator medium. Phys. Rev. B 94, 195427 (2016).

    Article  Google Scholar 

  • Slobozhanyuk, A. et al. Near-field imaging of spin-locked edge states in all-dielectric topological metasurfaces. Appl. Phys. Lett. 114, 031103 (2019).

    Article  Google Scholar 

  • Li, Y. et al. Mode-selective single-dipole excitation and controlled routing of guided waves in a multi-mode topological waveguide. Appl. Phys. Lett. 120, 221702 (2022).

    Article  CAS  Google Scholar 

  • Shalaev, M. I., Walasik, W., Tsukernik, A., Xu, Y. & Litchinitser, N. M. Robust topologically protected transport in photonic crystals at telecommunication wavelengths. Nat. Nanotechnol. 14, 31–34 (2019).

    Article  CAS  Google Scholar 

  • Collins, M. J., Zhang, F., Bojko, R., Chrostowski, L. & Rechtsman, M. C. Integrated optical Dirac physics via inversion symmetry breaking. Phys. Rev. A 94, 063827 (2016).

    Article  Google Scholar 

  • Zeng, Y. et al. Electrically pumped topological laser with valley edge modes. Nature 578, 246–250 (2020).

    Article  CAS  Google Scholar 

  • Time Stamp:

    More from Nature Nanotechnology