Polymer nanocomposite dielectrics for capacitive energy storage - Nature Nanotechnology

Polymer nanocomposite dielectrics for capacitive energy storage – Nature Nanotechnology

Source Node: 3053445
  • Yang, L. et al. Perovskite lead-free dielectrics for energy storage applications. Prog. Mater. Sci. 102, 72–108 (2019).

    Article  CAS  Google Scholar 

  • Yang, M., Ren, W., Guo, M. & Shen, Y. High-energy-density and high efficiency polymer dielectrics for high temperature electrostatic energy storage: a review. Small 18, 2205247 (2022).

    Article  CAS  Google Scholar 

  • Tan, D. Q. Review of polymer-based nanodielectric exploration and film scale-up for advanced capacitors. Adv. Funct. Mater. 30, 1808567 (2020).

    Article  CAS  Google Scholar 

  • McNab, I. R. Large-scale pulsed power opportunities and challenges. IEEE Trans. Plasma Sci. 42, 1118–1127 (2014).

    Article  Google Scholar 

  • Chen, Q., Shen, Y., Zhang, S. & Zhang, Q. M. Polymer-based dielectrics with high energy storage density. Annu. Rev. Mater. Res. 45, 433–458 (2015).

    Article  CAS  Google Scholar 

  • Li, H. et al. Dielectric polymers for high-temperature capacitive energy storage. Chem. Soc. Rev. 50, 6369–6400 (2021).

    Article  CAS  Google Scholar 

  • Liu, X.-J., Zheng, M.-S., Chen, G., Dang, Z.-M. & Zha, J.-W. High-temperature polyimide dielectric materials for energy storage: theory, design, preparation and properties. Energy Environ. Sci. 15, 56–81 (2021).

    Article  Google Scholar 

  • Feng, Q. et al. Recent progress and future prospects on all-organic polymer dielectrics for energy storage capacitors. Chem. Rev. 122, 3820–3878 (2022).

    Article  CAS  Google Scholar 

  • Yang, Y., Dang, Z., Li, Q. & He, J. Self-healing of electrical damage in polymers. Adv. Sci. 7, 2002131 (2020).

    Article  CAS  Google Scholar 

  • Pei, J.-Y., Yin, L.-J., Zhong, S.-L. & Dang, Z.-M. Suppressing the loss of polymer-based dielectrics for high power energy storage. Adv. Mater. 35, 2203623 (2023).

    Article  CAS  Google Scholar 

  • Li, Q. et al. High-temperature dielectric materials for electrical energy storage. Annu. Rev. Mater. Res. 48, 219–243 (2018).

    Article  CAS  Google Scholar 

  • Tan, D., Zhang, L., Chen, Q. & Irwin, P. High-temperature capacitor polymer films. J. Electron. Mater. 43, 4569–4575 (2014).

    Article  CAS  Google Scholar 

  • Popielarz, R. & Chiang, C. K. Polymer composites with the dielectric constant comparable to that of barium titanate ceramics. Mater. Sci. Eng. B 139, 48–54 (2007).

    Article  CAS  Google Scholar 

  • Sun, Y., Zhang, Z. & Wong, C. P. Influence of interphase and moisture on the dielectric spectroscopy of epoxy/silica composites. Polymer 46, 2297–2305 (2005).

    Article  CAS  Google Scholar 

  • Mackey, M. et al. Enhanced breakdown strength of multilayered films fabricated by forced assembly microlayer coextrusion. J. Phys. D 42, 175304 (2009).

    Article  Google Scholar 

  • Manoharan, M. P., Lanagan, M. T., Zhou, C., Kushner, D. & Zhang, S. H. Enhancement of dielectric breakdown strength in glass using polymer coatings. In IEEE International Power Modulator and High Voltage Conference 280–283 (IEEE, 2012).

  • Dang, Z. M., Yuan, J. K., Yao, S. H. & Liao, R. J. Flexible nanodielectric materials with high permittivity for power energy storage. Adv. Mater. 25, 6334–6365 (2013).

    Article  CAS  Google Scholar 

  • Luo, H. et al. Interface design for high energy density polymer nanocomposites. Chem. Soc. Rev. 48, 4424–4465 (2019).

    Article  CAS  Google Scholar 

  • Yang, M. et al. Surface engineering of 2D dielectric polymer films for scalable production of high-energy-density films. Prog. Mater. Sci. 128, 100968 (2022).

    Article  Google Scholar 

  • Zhu, L. Exploring strategies for high dielectric constant and low loss polymer dielectrics. J. Phys. Chem. Lett. 5, 3677–3687 (2014).

    Article  CAS  Google Scholar 

  • Rabe, K. M., Ahn, C. H. & Triscone, J. Physics of Ferroelectrics (Springer, 2007).

  • Yuan, X., Matsuyama, Y. & Chung, T. C. M. Synthesis of functionalized isotactic polypropylene dielectrics for electric energy storage applications. Macromolecules 43, 4011–4015 (2010).

    Article  CAS  Google Scholar 

  • Wei, J. et al. Facile synthesis of fluorinated poly(arylene ether nitrile) and its dielectric properties. J. Appl. Polym. Sci. 135, 46837 (2018).

    Article  Google Scholar 

  • Treufeld, I., Wang, D. H., Kurish, B. A., Tan, L.-S. & Zhu, L. Enhancing electrical energy storage using polar polyimides with nitrile groups directly attached to the main chain. J. Mater. Chem. A 2, 20683–20696 (2014).

    Article  CAS  Google Scholar 

  • Ren, W. et al. High-temperature electrical energy storage performances of dipolar glass polymer nanocomposites filled with trace ultrafine nanoparticles. Chem. Eng. J. 420, 127614 (2020).

    Article  Google Scholar 

  • Zhu, Y. F., Zhang, Z. B., Litt, M. H. & Zhu, L. High dielectric constant sulfonyl-containing dipolar glass polymers with enhanced orientational polarization. Macromolecules 51, 6257–6266 (2018).

    Article  CAS  Google Scholar 

  • Wu, S. et al. Aromatic polythiourea dielectrics with ultrahigh breakdown field strength, low dielectric loss, and high electric energy density. Adv. Mater. 25, 1734–1738 (2013).

    Article  CAS  Google Scholar 

  • Zhang, M. et al. Polymer dielectrics with simultaneous ultrahigh energy density and low loss. Adv. Mater. 33, 2008198 (2021).

    Article  CAS  Google Scholar 

  • Zhang, Z., Wang, D. H., Litt, M. H., Tan, L. & Zhu, L. High-temperature and high-energy-density dipolar glass polymers based on sulfonylated poly(2,6-dimethyl-1,4-phenylene oxide). Angew. Chem. Int. Ed. 57, 1528–1531 (2018).

    Article  CAS  Google Scholar 

  • Wei, J. & Zhu, L. Intrinsic polymer dielectrics for high energy density and low loss electric energy storage. Prog. Polym. Sci. 106, 101254 (2020).

    Article  CAS  Google Scholar 

  • Prateek, Thakur, V. K. & Gupta, R. K. Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects. Chem. Rev. 116, 4260–4317 (2016).

    Article  CAS  Google Scholar 

  • Sun, W. et al. Dielectric and energy storage performances of polyimide/BaTiO3 nanocomposites at elevated temperatures. J. Appl. Phys. 121, 244101 (2017).

    Article  Google Scholar 

  • Qi, L., Lee, B., Chen, S. H., Samuels, W. D. & Exarhos, G. High‐dielectric‐constant silver–epoxy composites as embedded dielectrics. Adv. Mater. 17, 1777–1781 (2005).

    Article  CAS  Google Scholar 

  • Wang, L. & Dang, Z. Carbon nanotube composites with high dielectric constant at low percolation threshold. Appl. Phys. Lett. 87, 042903 (2005).

    Article  Google Scholar 

  • Xia, F. et al. High electromechanical responses in a poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) terpolymer. Adv. Mater. 14, 1574–1577 (2002).

    <a data-track="click" rel="nofollow noopener" data-track-label="10.1002/1521-4095(20021104)14:213.0.CO;2-#" data-track-action="article reference" href="https://doi.org/10.1002%2F1521-4095%2820021104%2914%3A21%3C1574%3A%3AAID-ADMA1574%3E3.0.CO%3B2-%23" aria-label="Article reference 35" data-doi="10.1002/1521-4095(20021104)14:213.0.CO;2-#">Article  CAS  Google Scholar 

  • Chung, T. & Petchsuk, A. Synthesis and properties of ferroelectric fluoroterpolymers with curie transition at ambient temperature. Macromolecules 35, 7678–7684 (2002).

    Article  CAS  Google Scholar 

  • Zhang, Q., Bharti, V. & Zhao, X. Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer. Science 280, 2101–2104 (1998).

    Article  CAS  Google Scholar 

  • Bharti, V. et al. Ultrahigh field induced strain and polarization response in electron irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer. Mater. Res. Innov. 2, 57–63 (1998).

    Article  CAS  Google Scholar 

  • Mabboux, P.-Y. & Gleason, K. K. 19F NMR characterization of electron beam irradiated vinylidene fluoride–trifluoroethylene copolymers. J. Fluor. Chem. 113, 27–35 (2002).

    Article  CAS  Google Scholar 

  • Wang, L., Zhao, X. & Feng, J. Effects of electron irradiation on poly(vinylidene fluoride-trifluoroethylene) copolymers studied by solid-state nuclear magnetic resonance spectroscopy. J. Polym. Sci. B 44, 1714–1724 (2006).

    Article  CAS  Google Scholar 

  • Liu, Y. et al. Chirality-induced relaxor properties in ferroelectric polymers. Nat. Mater. 19, 1169–1174 (2020).

    Article  CAS  Google Scholar 

  • Liu, Y. et al. Relaxor ferroelectric polymers: insight into high electrical energy storage properties from a molecular perspective. Small Sci. 1, 2000061 (2021).

    Article  CAS  Google Scholar 

  • Liu, Y. et al. Ferroelectric polymers exhibiting behaviour reminiscent of a morphotropic phase boundary. Nature 562, 96–100 (2018).

    Article  CAS  Google Scholar 

  • Jiang, J. et al. Ultrahigh discharge efficiency in multilayered polymer nanocomposites of high energy density. Energy Storage Mater. 18, 213–221 (2019).

    Article  Google Scholar 

  • Li, Q. et al. Solution-processed ferroelectric terpolymer nanocomposites with high breakdown strength and energy density utilizing boron nitride nanosheets. Energy Environ. Sci. 8, 922–931 (2015).

    Article  CAS  Google Scholar 

  • Tang, H., Lin, Y. & Sodano, H. A. Synthesis of high aspect ratio BaTiO3 nanowires for high energy density nanocomposite capacitors. Adv. Energy Mater. 3, 451–456 (2013).

    Article  CAS  Google Scholar 

  • Zhang, Y. et al. Energy storage enhancement of P(VDF-TrFE-CFE)-based composites with double-shell structured BZCT nanofibers of parallel and orthogonal configurations. Nano Energy 66, 104195 (2019).

    CAS  Google Scholar 

  • Zhang, Z. et al. High-κ polymers of intrinsic microporosity: a new class of high temperature and low loss dielectrics for printed electronics. Mater. Horiz. 7, 592–597 (2020).

    Article  CAS  Google Scholar 

  • Thakur, Y. et al. Generating high dielectric constant blends from lower dielectric constant dipolar polymers using nanostructure engineering. Nano Energy 32, 73–79 (2017).

    CAS  Google Scholar 

  • Zhang, Q., Chen, X., Zhang, T. & Zhang, Q. M. Giant permittivity materials with low dielectric loss over a broad temperature range enabled by weakening intermolecular hydrogen bonds. Nano Energy 64, 103916 (2019).

    CAS  Google Scholar 

  • Dissado, L. A. & Fothergill, J. C. Electrical Degradation and Breakdown in Polymers (Institution of Engineering and Technology, 1992).

  • Ieda, M. Dielectric breakdown process of polymers. IEEE Trans. Electr. Insul. EI-15, 206–224 (1980).

    Article  CAS  Google Scholar 

  • Shimizu, N., Katsukawa, H., Miyauchi, M., Kosaki, M. & Horii, K. The space charge behavior and luminescence phenomena in polymers at 77 K. IEEE Trans. Electr. Insul. 14, 256–263 (1979).

    Article  Google Scholar 

  • Kofod, G., Sommer-Larsen, P., Kronbluh, R. & Pelrine, R. Actuation responsee of polyacrylate dielectric elastomers. J. Intell. Mater. Syst. Struct. 14, 787–793 (2003).

    Article  CAS  Google Scholar 

  • Densley, J., Kalicki, T. & Nadolny, Z. Characteristics of PD pulses in electrical trees and interfaces in extruded cables. IEEE Trans. Dielectr. Electr. Insul. 8, 48–57 (2001).

    Article  Google Scholar 

  • Ray, S. An Introduction to High Voltage Engineering (PHI Learning, 2013).

  • Pei, J. et al. All-organic dielectric polymer films exhibiting superior electric breakdown strength and discharged energy density by adjusting the electrode–dielectric interface with an organic nano-interlayer. Energy Environ. Sci. 14, 5513–5522 (2021).

    Article  CAS  Google Scholar 

  • Seitz, F. On the theory of electron multiplication in crystals. Phys. Rev. 76, 1376–1393 (1949).

    Article  Google Scholar 

  • Frohlich, H. On the theory of dielectric breakdown in solids. Proc. R. Soc. Lond. 188, 521–532 (1947).

    CAS  Google Scholar 

  • Chiu, F. C. A review on conduction mechanisms in dielectric films. Adv. Mater. Sci. Eng. 2014, 578168 (2014).

    Article  Google Scholar 

  • Zhang, X. et al. Polymer nanocomposites with ultrahigh energy density and high discharge efficiency by modulating their nanostructures in three dimensions. Adv. Mater. 30, 1707269 (2018).

    Article  Google Scholar 

  • Jiang, J. et al. Polymer nanocomposites with interpenetrating gradient structure exhibiting ultrahigh discharge efficiency and energy density. Adv. Energy Mater. 9, 1803411 (2019).

    Article  Google Scholar 

  • Bao, Z. W. et al. Negatively charged nanosheets significantly enhance the energy-storage capability of polymer-based nanocomposites. Adv. Mater. 32, 1907227 (2020).

    Article  CAS  Google Scholar 

  • Sun, B. et al. Excellent stability in polyetherimide/SiO2 nanocomposites with ultrahigh energy density and discharge efficiency at high temperature. Small 18, 2202421 (2022).

    Article  CAS  Google Scholar 

  • Li, H. et al. Scalable polymer nanocomposites with record high-temperature capacitive performance enabled by rationally designed nanostructured inorganic fillers. Adv. Mater. 31, 1900875 (2019).

    Article  Google Scholar 

  • Li, Q., Han, K., Gadinski, M. R., Zhang, G. & Wang, Q. High energy and power density capacitors from solution-processed ternary ferroelectric polymer nanocomposites. Adv. Mater. 26, 6244–6249 (2014).

    Article  CAS  Google Scholar 

  • Shen, Z. et al. High-throughput phase-field design of high-energy-density polymer nanocomposites. Adv. Mater. 30, 1704380 (2018).

    Article  Google Scholar 

  • Li, H. et al. Ternary polymer nanocomposites with concurrently enhanced dielectric constant and breakdown strength for high-temperature electrostatic capacitors. Infomat 2, 389–400 (2020).

    Article  CAS  Google Scholar 

  • Wang, P. et al. High-temperature flexible nanocomposites with ultra-high energy storage density by nanostructured MgO fillers. Adv. Funct. Mater. 32, 2204155 (2022).

    Article  CAS  Google Scholar 

  • Li, Q. et al. Flexible high-temperature dielectric materials from polymer nanocomposites. Nature 523, 576–579 (2015).

    Article  CAS  Google Scholar 

  • Luo, S. et al. Significantly enhanced electrostatic energy storage performance of flexible polymer composites by introducing highly insulating-ferroelectric microhybrids as fillers. Adv. Energy Mater. 9, 1803204 (2019).

    Article  Google Scholar 

  • Luo, B. et al. Superhierarchical inorganic/organic nanocomposites exhibiting simultaneous ultrahigh dielectric energy density and high efficiency. Adv. Funct. Mater. 31, 2007994 (2021).

    Article  CAS  Google Scholar 

  • Wang, P. et al. Ultrahigh energy storage performance of layered polymer nanocomposites over a broad temperature range. Adv. Mater. 33, 2103338 (2021).

    Article  CAS  Google Scholar 

  • Hu, P. et al. Topological-structure modulated polymer nanocomposites exhibiting highly enhanced dielectric strength and energy density. Adv. Funct. Mater. 24, 3172–3178 (2014).

    Article  CAS  Google Scholar 

  • Shen, Y. et al. Modulation of topological structure induces ultrahigh energy density of graphene/Ba0.6Sr0.4TiO3 nanofiber/polymer nanocomposites. Nano Energy 18, 176–186 (2015).

    CAS  Google Scholar 

  • Wang, Y., Li, Z., Wu, C. & Cao, Y. High-temperature dielectric polymer nanocomposites with interposed montmorillonite nanosheets. Chem. Eng. J. 401, 126093 (2020).

    Article  CAS  Google Scholar 

  • Zhu, Y. et al. High energy density polymer dielectrics interlayered by assembled boron nitride nanosheets. Adv. Energy Mater. 9, 1901826 (2019).

    Article  Google Scholar 

  • Bai, H. R., Zhu, K., Wang, Z., Shen, B. & Zhai, J. W. 2D fillers highly boost the discharge energy density of polymer-based nanocomposites with trilayered architecture. Adv. Funct. Mater. 31, 2102646 (2021).

    Article  CAS  Google Scholar 

  • Wang, Y. et al. Gradient-layered polymer nanocomposites with significantly improved insulation performance for dielectric energy storage. Energy Storage Mater 24, 626 (2019).

    Article  Google Scholar 

  • Wang, H. Q. et al. Dielectric properties and energy storage performance of PVDF-based composites with MoS2@MXene nanofiller. Chem. Eng. J. 437, 135431 (2022).

    Article  CAS  Google Scholar 

  • Li, J. et al. Constructing bidirectional-matched interface between polymer and 2D nanosheets for enhancing energy storage performance of the composites. Energy Storage Mater. 54, 605–614 (2022).

    Article  Google Scholar 

  • Zhang, B. et al. Reviving the ‘Schottky’ barrier for flexible polymer dielectrics with a superior 2D nanoassembly coating. Adv. Mater. 33, 2101374 (2021).

    Article  CAS  Google Scholar 

  • Wang, Y. et al. Interfacial 2D montmorillonite nanocoatings enable sandwiched polymer nanocomposites to exhibit ultrahigh capacitive energy storage performance at elevated temperatures. Adv. Sci. 9, 2204760 (2022).

    Article  CAS  Google Scholar 

  • Nakamura, S. et al. Effects of filler-size on electrical treeing in epoxy/silica nanocomposites. In 2020 IEEE Conference on Electrical Insulation and Dielectric Phenomena 184–187 (IEEE, 2020).

  • Yue, D. et al. Prediction of energy storage performance in polymer composites using high-throughput stochastic breakdown simulation and machine learning. Adv. Sci. 9, 2105773 (2022).

    Article  CAS  Google Scholar 

  • Ai, D. et al. Tuning nanofillers in in situ prepared polyimide nanocomposites for high-temperature capacitive energy storage. Adv. Energy Mater. 10, 1903881 (2020).

    Article  CAS  Google Scholar 

  • Jiang, Y. D. et al. Ultrahigh energy density in continuously gradient-structured all-organic dielectric polymer films. Adv. Funct. Mater. 32, 2200848 (2022).

    Article  CAS  Google Scholar 

  • Li, H. et al. High-performing polysulfate dielectrics for electrostatic energy storage under harsh conditions. Joule 7, 95–111 (2023).

    Article  CAS  Google Scholar 

  • Li, H. et al. Crosslinked fluoropolymers exhibiting superior high-temperature energy density and charge-discharge efficiency. Energy Environ. Sci. 13, 1279–1286 (2020).

    Article  CAS  Google Scholar 

  • Khanchaitit, P., Han, K., Gadinski, M. R., Li, Q. & Wang, Q. Ferroelectric polymer networks with high energy density and improved discharged efficiency for dielectric energy storage. Nat. Commun. 4, 2845 (2013).

    Article  Google Scholar 

  • Pan, Z. et al. Tailoring poly(styrene‐co‐maleic anhydride) networks for all‐polymer dielectrics exhibiting ultrahigh energy density and charge–discharge efficiency at elevated temperatures. Adv. Mater. 35, 2207580 (2022).

    Article  Google Scholar 

  • Chen, S. Y. et al. Asymmetric alicyclic amine-polyether amine molecular chain structure for improved energy storage density of high-temperature crosslinked polymer capacitor. Chem. Eng. J. 387, 123662 (2020).

    Article  CAS  Google Scholar 

  • Zhang, Y. et al. Enhanced discharged efficiency and high energy density at elevated temperature in polymer dielectric via manipulating relaxation behavior. CCS Chem. 2, 1169–1177 (2020).

    Article  CAS  Google Scholar 

  • Tang, Y. et al. Crosslinked dielectric materials for high-temperature capacitive energy storage. J. Mater. Chem. A 9, 10000–10011 (2021).

    Article  CAS  Google Scholar 

  • Yang, M., Zhou, L., Li, X., Ren, W. & Shen, Y. Polyimides physical-crosslinked by aromatic molecules exhibt ultrahigh energy deneity at 200 °C. Adv. Mater. 35, e2302392 (2023).

    Article  Google Scholar 

  • Yuan, C. et al. Polymer/molecular semiconductor all-organic composites for high-temperature dielectric energy storage. Nat. Commun. 11, 3919 (2020).

    Article  CAS  Google Scholar 

  • Dong, J. et al. A facile in situ surface-functionalization approach to scalable laminated high-temperature polymer dielectrics with ultrahigh capacitive performance. Adv. Funct. Mater. 31, 2102644 (2021).

    Article  CAS  Google Scholar 

  • Bi, K. et al. Ultrafine core-shell BaTiO3@SiO2 structures for nanocomposite capacitors with high energy density. Nano Energy 51, 513–523 (2018).

    Article  CAS  Google Scholar 

  • Zhou, Y. et al. A scalable, high-throughput, and environmentally benign approach to polymer dielectrics exhibiting significantly improved capacitive performance at high temperatures. Adv. Mater. 30, 1805672 (2018).

    Article  Google Scholar 

  • Dong, J. et al. Enhancing high-temperature capacitor performance of polymer nanocomposites by adjusting the energy level structure in the micro-/meso-scopic interface region. Nano Energy 99, 107314 (2022).

    CAS  Google Scholar 

  • Azizi, A. et al. High-performance polymers sandwiched with chemical vapor deposited hexagonal boron nitrides as scalable high-temperature dielectric materials. Adv. Mater. 29, 1701864 (2017).

    Article  Google Scholar 

  • Liu, G. et al. Sandwich-structured polymers with electrospun boron nitrides layers as high-temperature energy storage dielectrics. Chem. Eng. J. 389, 124443 (2020).

    Article  CAS  Google Scholar 

  • Liu, F. H. et al. High-energy-density dielectric polymer nanocomposites with trilayered architecture. Adv. Funct. Mater. 27, 1606292 (2017).

    Article  Google Scholar 

  • Cheng, S. et al. Polymer dielectrics sandwiched by medium-dielectric-constant nanoscale deposition layers for high-temperature capacitive energy storage. Energy Storage Mater. 42, 445–453 (2021).

    Article  Google Scholar 

  • Ren, L. et al. High-temperature high-energy-density dielectric polymer nanocomposites utilizing inorganic core–shell nanostructured nanofillers. Adv. Energy Mater. 11, 2101297 (2021).

    Article  CAS  Google Scholar 

  • Pan, Z., Zhai, J. & Shen, B. Multilayer hierarchical interfaces with high energy density in polymer nanocomposites composed of BaTiO3@TiO2@Al2O3 nanofibers. J. Mater. Chem. A 5, 15217–15226 (2017).

    Article  CAS  Google Scholar 

  • Liu, H. et al. Single-crystalline BaZr0.2Ti0.8O3 membranes enabled high energy density in PEI-based composites for high-temperature electrostatic capacitors. Adv. Mater. 35, 2300962 (2023).

    Article  CAS  Google Scholar 

  • Ren, W. et al. Scalable ultrathin all-organic polymer dielectric films for high-temperature capacitive energy storage. Adv. Mater. 34, 2207421 (2022).

    Article  CAS  Google Scholar 

  • Zhang, B. et al. Superior high-temperature energy density in molecular semiconductor/polymer all-organic composites. Adv. Funct. Mater. 33, 2210050 (2023).

    Article  CAS  Google Scholar 

  • Zhou, Y., Zhu, Y., Xu, W. & Wang, Q. Molecular trap engineering enables superior high-temperature capacitive energy storage performance in all-organic composite at 200 °C. Adv. Energy Mater. 13, 2203961 (2023).

    Article  CAS  Google Scholar 

  • Liao, R.-J., Zhou, T.-C., George, C. & Yang, L.-J. A space charge trapping model and its parameters in polymeric material. Acta Phys. Sin. 61, 017201 (2012).

    Article  Google Scholar 

  • Sarjeant, W. J., Zirnheld, J. & MacDougall, F. W. Capacitors. IEEE Trans. Plasma Sci. 26, 1368–1392 (1998).

    Article  CAS  Google Scholar 

  • Ho, J. S. & Greenbaum, S. G. Polymer capacitor dielectrics for high temperature applications. ACS Appl. Mater. Interfaces 10, 29189–29218 (2018).

    Article  CAS  Google Scholar 

  • Ameduri, B. From vinylidene fluoride (VDF) to the applications of VDF-containing polymers and copolymers: recent developments and future trends. Chem. Rev. 109, 6632–6686 (2009).

    Article  CAS  Google Scholar 

  • Wu, C. et al. Flexible temperature-invariant polymer dielectrics with large bandgap. Adv. Mater. 32, 2000499 (2020).

    Article  CAS  Google Scholar 

  • Wu, C. et al. Flexible cyclic-olefin with enhanced dipolar relaxation for harsh condition electrification. Proc. Natl Acad. Sci. USA 118, e2115367118 (2021).

    Article  CAS  Google Scholar 

  • Deshmukh, A. A. et al. Flexible polyolefin dielectric by strategic design of organic modules for harsh condition electrification. Energy Environ. Sci. 15, 1307–1314 (2022).

    Article  CAS  Google Scholar 

  • Chen, J. et al. Ladderphane copolymers for high-temperature capacitive energy storage. Nature 615, 62–66 (2023).

    Article  CAS  Google Scholar 

  • Dong, J. et al. Scalable polyimide-organosilicate hybrid films for high-temperature capacitive energy storage. Adv. Mater. 35, 2211487 (2023).

    Article  CAS  Google Scholar 

  • Dai, Z. et al. Scalable polyimide-poly(amic acid) copolymer based nanocomposites for high-temperature capacitive energy storage. Adv. Mater. 34, 2101976 (2021).

    Article  Google Scholar 

  • Wu, C. et al. Rational design of all-organic flexible high-temperature polymer dielectrics. Matter 5, 2615–2623 (2022).

    Article  CAS  Google Scholar 

  • Kim, G. H. et al. High thermal conductivity in amorphous polymer blends by engineered interchain interactions. Nat. Mater. 14, 295–300 (2015).

    Article  CAS  Google Scholar 

  • Zhang, Q. et al. High-temperature polymers with record-high breakdown strength enabled by rationally designed chain-packing behavior in blends. Matter 4, 2448–2459 (2021).

    Article  CAS  Google Scholar 

  • Liu, K. et al. Realizing enhanced energy density in ternary polymer blends by intermolecular structure design. Chem. Eng. J. 446, 136980 (2022).

    Article  Google Scholar 

  • Chen, Z. et al. Ultrahigh energy-density flexible dielectric films achieved by self-bundled polymer nanocluster in necklace-like arrangement. Energy Storage Mater. 33, 1–10 (2020).

    Article  Google Scholar 

  • Huang, X. Y. et al. Thermal conductivity of graphene-based polymer nanocomposites. Mater. Sci. Eng. R 142, 100577 (2020).

    Article  Google Scholar 

  • Kumanek, B. & Janas, D. Thermal conductivity of carbon nanotube networks: a review. J. Mater. Sci. 54, 7397–7427 (2019).

    Article  CAS  Google Scholar 

  • Xiao, M. & Du, B. X. Review of high thermal conductivity polymer dielectrics for electrical insulation. High. Volt. 1, 34–42 (2016).

    Article  Google Scholar 

  • Huang, X., Jiang, P. & Tanaka, T. A review of dielectric polymer composites with high thermal conductivity. IEEE Electr. Insul. Mag. 27, 8–16 (2011).

    Article  Google Scholar 

  • Shen, Z. et al. Phase-field model of electrothermal breakdown in flexible high-temperature nanocomposites under extreme conditions. Adv. Energy Mater. 8, 1800509 (2018).

    Article  Google Scholar 

  • Wang, S. et al. Polymer nanocomposite dielectrics: understanding the matrix/particle interface. ACS Nano 16, 13612–13656 (2022).

    CAS  Google Scholar 

  • Lewis, T. J. Nanometric dielectrics. IEEE Trans. Dielectr. Electr. Insul. 1, 812–825 (1994).

    Article  CAS  Google Scholar 

  • Lewis, T. J. Interfaces are the dominant feature of dielectrics at the nanometric level. IEEE Trans. Dielectr. Electr. Insul. 11, 739–753 (2004).

    Article  CAS  Google Scholar 

  • Tanaka, T., Kozako, M., Fuse, N. & Ohki, Y. Proposal of a multi-core model for polymer nanocomposite dielectrics. IEEE Trans. Dielectr. Electr. Insul. 12, 669–681 (2005).

    Article  CAS  Google Scholar 

  • Baer, E. & Zhu, L. 50th anniversary perspective: dielectric phenomena in polymers and multilayered dielectric films. Macromolecules 50, 2239–2256 (2017).

    Article  CAS  Google Scholar 

  • Niu, Y. et al. Significantly enhancing the discharge efficiency of sandwich-structured polymer dielectrics at elevated temperature by building carrier blocking interface. Nano Energy 97, 107215 (2022).

    Article  CAS  Google Scholar 

  • Roscow, J. I., Bowen, C. R. & Almond, D. P. Breakdown in the case for materials with giant permittivity? ACS Energy Lett. 2, 2264–2269 (2017).

    Article  CAS  Google Scholar 

  • Bai, H. R. et al. Interfacial polarization regulation of ultrathin 2D nanosheets inducing high energy storage density of polymer-based nanocomposite with opposite gradient architecture. Energy Storage Mater. 46, 503–511 (2022).

    Article  Google Scholar 

  • Zhang, X. et al. Ultrahigh energy density of polymer nanocomposites containing BaTiO3@TiO2 nanofibers by atomic-scale interface engineering. Adv. Mater. 27, 819–824 (2015).

    Article  CAS  Google Scholar 

  • Zhang, X. et al. Giant energy density and improved discharge efficiency of solution-processed polymer nanocomposites for dielectric energy storage. Adv. Mater. 28, 2055–2061 (2016).

    Article  CAS  Google Scholar 

  • Sun, L. et al. Asymmetric trilayer all‐polymer dielectric composites with simultaneous high efficiency and high energy density: a novel design targeting for advanced energy storage capacitors. Adv. Funct. Mater. 31, 2100280 (2021).

    Article  CAS  Google Scholar 

  • Wang, Y. et al. Significantly enhanced breakdown strength and energy density in sandwich-structured barium titanate/poly(vinylidene fluoride) nanocomposites. Adv. Mater. 27, 6658–6663 (2015).

    Article  CAS  Google Scholar 

  • Peng, S. et al. Direct detection of local electric polarization in the interfacial region in ferroelectric polymer nanocomposites. Adv. Mater. 31, 1807722 (2019).

    Article  Google Scholar 

  • Zhang, T. et al. A highly scalable dielectric metamaterial with superior capacitor performance over a broad temperature. Sci. Adv. 6, eaax6622 (2020).

    Article  CAS  Google Scholar 

  • Chen, X. et al. Topological structure enhanced nanostructure of high temperature polymer exhibiting more than ten times enhancement of dipolar response. Nano Energy 88, 106225 (2021).

    Article  CAS  Google Scholar 

  • Li, L. et al. Significant improvements in dielectric constant and energy density of ferroelectric polymer nanocomposites enabled by ultralow contents of nanofillers. Adv. Mater. 33, 2102392 (2021).

    Article  CAS  Google Scholar 

  • Marwat, M. A. et al. Ultrahigh energy density and thermal stability in sandwich-structured nanocomposites with dopamine@Ag@BaTiO3. Energy Storage Mater. 31, 492–504 (2020).

    Article  Google Scholar 

  • Zhou, Y. et al. Interface-modulated nanocomposites based on polypropylene for high-temperature energy storage. Energy Storage Mater. 28, 255–263 (2020).

    Article  Google Scholar 

  • Huang, C. et al. Double enhanced energy storage density via polarization gradient design in ferroelectric poly(vinylidene fluoride)-based nanocomposites. Chem. Eng. J. 411, 128585 (2021).

    Article  CAS  Google Scholar 

  • Zheng, M. S. et al. Improved dielectric, tensile and energy storage properties of surface rubberized BaTiO3/polypropylene nanocomposites. Nano Energy 48, 144–151 (2018).

    Article  CAS  Google Scholar 

  • Chen, S. N. et al. Polymer-based dielectric nanocomposites with high energy density via using natural sepiolite nanofibers. Chem. Eng. J. 401, 126095 (2020).

    Article  CAS  Google Scholar 

  • Liu, B. et al. High energy density and discharge efficiency polypropylene nanocomposites for potential high-power capacitor. Energy Storage Mater. 27, 443–452 (2020).

    Article  Google Scholar 

  • Chen, J. et al. Chemical adsorption on 2D dielectric nanosheets for matrix free nanocomposites with ultrahigh electrical energy storage. Sci. Bull. 67, 609–618 (2021).

    Article  Google Scholar 

  • Huang, Y., Huang, X., Schadler, L. S., He, J. & Jiang, P. Core@ double-shell structured nanocomposites: a route to high dielectric constant and low loss material. ACS Appl. Mater. Interfaces 8, 25496–25507 (2016).

    Article  CAS  Google Scholar 

  • Xu, W. et al. Bioinspired polymer nanocomposites exhibit giant energy density and high efficiency at high temperature. Small 15, 1901582 (2019).

    Article  Google Scholar 

  • Liu, J. et al. Optimizing electric field distribution via tuning cross-linked point size for improving the dielectric properties of polymer nanocomposites. Nanoscale 12, 12416–12425 (2020).

    Article  CAS  Google Scholar 

  • Guo, M. et al. High-energy-density ferroelectric polymer nanocomposites for capacitive energy storage: enhanced breakdown strength and improved discharge efficiency. Mater. Today 29, 49–67 (2019).

    Article  CAS  Google Scholar 

  • Wang, R. et al. Designing tailored combinations of structural units in polymer dielectrics for high-temperature capacitive energy storage. Nat. Commun. 14, 2406 (2023).

    Article  CAS  Google Scholar 

  • Yang, M. et al. Quantum size effect to induce colossal high-temperature energy storage density and efficiency in polymer/inorganic cluster composites. Adv. Mater. 35, 2301936 (2023).

    Article  CAS  Google Scholar 

  • Shen, Z.-H. et al. Phase-field modeling and machine learning of electric-thermal-mechanical breakdown of polymer-based dielectrics. Nat. Commun. 10, 1843 (2019).

    Article  Google Scholar 

  • Martin, L. W. & Rappe, A. M. Thin-film ferroelectric materials and their applications. Nat. Rev. Mater. 2, 16087 (2016).

    Article  Google Scholar 

  • Ramesh, R. & Schlom, D. G. Creating emergent phenomena in oxide superlattices. Nat. Rev. Mater. 4, 257–268 (2019).

    Article  Google Scholar 

  • Das, S. et al. Observation of room-temperature polar skyrmions. Nature 568, 368–372 (2019).

    Article  CAS  Google Scholar 

  • Yadav, A. K. et al. Observation of polar vortices in oxide superlattices. Nature 530, 198–201 (2016).

    Article  CAS  Google Scholar 

  • Yang, J. et al. Spontaneous electric-polarization topology in confined ferroelectric nematics. Nat. Commun. 13, 7806 (2022).

    Article  CAS  Google Scholar 

  • Zhang, H.-Y. et al. Observation of vortex domains in a two-dimensional lead iodide perovskite ferroelectric. J. Am. Chem. Soc. 142, 4925–4931 (2020).

    Article  CAS  Google Scholar 

  • Guo, M. et al. A pyrotoroidic transition in ferroelectric polymer. Matter 5, 3041–3052 (2022).

    Article  CAS  Google Scholar 

  • Guo, M. et al. Toroidal polar topology in strained ferroelectric polymer. Science 371, 1050–1056 (2021).

    Article  CAS  Google Scholar 

  • Luk’yanchuk, I., Tikhonov, Y., Razumnaya, A. & Vinokur, V. M. Hopfions emerge in ferroelectrics. Nat. Commun. 11, 2433 (2020).

    Article  Google Scholar 

  • Aramberri, H., Fedorova, N. S. & Íñiguez, J. Ferroelectric/paraelectric superlattices for energy storage. Sci. Adv. 8, eabn4880 (2022).

    Article  CAS  Google Scholar 

  • Liu, Y. et al. Phase-field simulations of tunable polar topologies in lead-free ferroelectric/paraelectric multilayers with ultrahigh energy-storage performance. Adv. Mater. 34, 2108772 (2022).

    Article  CAS  Google Scholar 

  • Ni, B., Shi, Y. & Wang, X. The sub-nanometer scale as a new focus in nanoscience. Adv. Mater. 30, 1802031 (2018).

    Article  Google Scholar 

  • Liu, Q. & Wang, X. Polyoxometalate clusters: sub-nanometer building blocks for construction of advanced materials. Matter 2, 816–841 (2020).

    Article  Google Scholar 

  • Zhang, S., Shi, W. & Wang, X. Locking volatile organic molecules by subnanometer inorganic nanowire-based organogels. Science 377, 100–104 (2022).

    Article  CAS  Google Scholar 

  • Lu, Q. C. & Wang, X. Recent progress of sub-nanometric materials in photothermal energy conversion. Adv. Sci. 9, 2104225 (2022).

    Article  CAS  Google Scholar 

  • Yang, M. et al. Sub-nanowires boost superior capacitive energy storage performance of polymer composites at high temperatures. Adv. Funct. Mater. 33, 2214100 (2023).

    Article  CAS  Google Scholar 

  • Wu, X., Chen, X., Zhang, Q. M. & Tan, D. Q. Advanced dielectric polymers for energy storage. Energy Storage Mater. 44, 29–47 (2022).

    Article  Google Scholar 

  • Zhang, Y. et al. Self-healing of materials under high electrical stress. Matter 3, 989–1008 (2020).

    Article  Google Scholar 

  • Time Stamp:

    More from Nature Nanotechnology