Optical gain and lasing from bulk cadmium sulfide nanocrystals through bandgap renormalization - Nature Nanotechnology

Optical gain and lasing from bulk cadmium sulfide nanocrystals through bandgap renormalization – Nature Nanotechnology

Source Node: 2919765
  • Zhang, Q., Tao, W., Huang, J., Xia, R. & Cabanillas-Gonzalez, J. Toward electrically pumped organic lasers: a review and outlook on material developments and resonator architectures. Adv. Photon. Res. 2, 2000155 (2021).

    Article  Google Scholar 

  • Park, Y.-S., Roh, J., Diroll, B. T., Schaller, R. D. & Klimov, V. I. Colloidal quantum dot lasers. Nat. Rev. Mater. 6, 382–401 (2021).

    Article  CAS  Google Scholar 

  • Geiregat, P., Van Thourhout, D. & Hens, Z. A bright future for colloidal quantum dot lasers. npg Asia Mater. 11, 41 (2019).

    Article  CAS  Google Scholar 

  • Pietryga, M. et al. Spectroscopic and device aspects of nanocrystal quantum dots. Chem. Rev. 116, 10513–10622 (2016).

    Article  CAS  Google Scholar 

  • Shirasaki, Y., Supran, G. J., Bawendi, M. G. & Bulović, V. Emergence of colloidal quantum-dot light-emitting technologies. Nat. Photon. 7, 13–23 (2012).

    Article  Google Scholar 

  • Semonin, O. E. et al. Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Science 334, 1530–1533 (2011).

    Article  CAS  Google Scholar 

  • Deng, Z., Jeong, K. S. & Guyot-Sionnest, P. Colloidal quantum dots intraband photodetectors. ACS Nano 8, 11707–11714 (2014).

    Article  CAS  Google Scholar 

  • Livache, C., Martinez, B., Goubet, N., Ramade, J. & Lhuillier, E. Road map for nanocrystal based infrared photodetectors. Front. Chem. 6, 575 (2018).

  • Garcia de Arquer, F. P., Armin, A., Meredith, P. & Sargent, E. Solution-processed semiconductors for next-generation photo-detectors. Nat. Rev. Mater. 2, 16100 (2017).

    Article  Google Scholar 

  • Klimov, V. I. et al. Optical gain and stimulated emission in nanocrystal quantum dots. Science 290, 314–317 (2000).

    Article  CAS  Google Scholar 

  • Klimov, V. I. et al. Single-exciton optical gain in semiconductor nanocrystals. Nature 447, 441–446 (2007).

    Article  CAS  Google Scholar 

  • Wu, K., Park, Y.-S., Lim, J. & Klimov, V. I. Towards zero-threshold optical gain using charged semiconductor quantum dots. Nat. Nanotechnol. 12, 1140–1147 (2017).

    Article  CAS  Google Scholar 

  • Geiregat, P. et al. Continuous-wave infrared optical gain and amplified spontaneous emission at ultralow threshold by colloidal HgTe quantum dots. Nat. Mater. 17, 35–42 (2017).

    Article  Google Scholar 

  • Cassidy, J. et al. Quantum shells boost the optical gain of lasing media. ACS Nano 16, 3017–3026 (2022).

    Article  CAS  Google Scholar 

  • Ithurria, S. et al. Colloidal nanoplatelets with two-dimensional electronic structure. Nat. Mater. 10, 936–941 (2011).

    Article  CAS  Google Scholar 

  • Guzelturk, B., Pelton, M., Olutas, M. & Demir, H. V. Giant modal gain coefficients in colloidal II-VI nanoplatelets. Nano Lett. 19, 277–282 (2018).

    Article  Google Scholar 

  • Geiregat, P. et al. Thermodynamic equilibrium between excitons and excitonic molecules dictates optical gain in colloidal CdSe quantum wells. J. Phys. Chem. Lett. 10, 3637–3644 (2019).

    Article  CAS  Google Scholar 

  • Li, Q., Liu, Q., Schaller, R. D. & Lian, T. Reducing the optical gain threshold in two-dimensional CdSe nanoplatelets by the giant oscillator strength transition effect. J. Phys. Chem. Lett. 10, 1624–1632 (2019).

    Article  CAS  Google Scholar 

  • Bisschop, S., Geiregat, P., Aubert, T. & Hens, Z. The impact of core/shell sizes on the optical gain characteristics of CdSe/CdS quantum dots. ACS Nano 12, 9011–9021 (2018).

    Article  CAS  Google Scholar 

  • Fan, F. et al. Continuous-wave lasing in colloical quantum dot solids enabled by facet-selective epitaxy. Nature 544, 75–79 (2017).

    Article  CAS  Google Scholar 

  • Lim, J., Park, Y.-S. & Klimov, V. I. Optical gain in colloidal quantum dots achieved with direct-current electrical pumping. Nat. Mater. 17, 42–49 (2017).

    Article  Google Scholar 

  • Yang, Z., Pelton, M., Fedin, I. & Talapin, D. V. A room temperature continuous-wave nanolaser using colloidal quantum wells. Nat. Commun. 8, 143 (2017).

  • Xie, W. et al. On-chip integrated quantum-dot silicon-nitride microdisk lasers. Adv. Mater. 29, 1604866 (2017).

  • Xie, W. et al. Colloidal quantum dots enabling coherent light sources for integrated silicon-nitride photonics. IEEE J. Sel. Topics Quantum Electron. 23, 8200913 (2017).

  • Jung, H. et al. Two-band optical gain and ultrabright electroluminescence from colloidal quantum dots at 1,000 A cm–2. Nat. Commun. 13, 3734 (2022).

    Article  CAS  Google Scholar 

  • Ahn, N. et al. Electrically driven amplified spontaneous emission from colloidal quantum dots. Nature 617, 79–85 (2023).

    Article  CAS  Google Scholar 

  • Chernikov, A., Ruppert, C., Hill, H. M., Rigosi, A. F. & Heinz, T. F. Population inversion and giant bandgap renormalization in atomically thin WS2 layers. Nat. Photon. 9, 466–470 (2015).

  • Hens, Z. & Moreels, I. Light absorption by colloidal semiconductor quantum dots. J. Mater. Chem. 22, 10406 (2012).

    Article  CAS  Google Scholar 

  • Ghobadi, N. Band gap determination using absorption spectrum fitting procedure. Int. Nano Lett. 3, 2 (2013).

    Article  Google Scholar 

  • Maes, J. et al. Size and concentration determination of colloidal nanocrystals by small-angle X-ray scattering. Chem. Mater. 30, 3952–3962 (2018).

    Article  CAS  Google Scholar 

  • Thambidurai, M. et al. Strong quantum confinement effect in nanocrystalline CdS. J. Mater. Sci. 45, 3254–3258 (2010).

    Article  CAS  Google Scholar 

  • Aubert, T. et al. General expression for the size-dependent optical properties of quantum dots. Nano Lett. 22, 1778–1785 (2022).

    Article  CAS  Google Scholar 

  • Geiregat, P. et al. Using bulk-like nanocrystals to probe intrinsic optical gain characteristics of inorganic lead halide perovskites. ACS Nano 12, 10178–10188 (2018).

    Article  CAS  Google Scholar 

  • Rodà, C. et al. Stimulated emission through an electron-hole plasma in colloidal CdSe quantum rings. Nano Lett. 21, 10062–10069 (2021).

    Article  Google Scholar 

  • Di Stasio, F., Polovitsyn, A., Angeloni, I., Moreels, I. & Krahne, R. Broadband amplified spontaneous emission and random lasing from wurtzite CdSe/CdS ‘giant-shell’ nanocrystals. ACS Photon. 3, 2083–2088 (2016).

    Article  Google Scholar 

  • Aellen, M. & Norris, D. J. Understanding optical gain: which confinement factor is correct? ACS Photon. 9, 3498–3505 (2022).

    Article  CAS  Google Scholar 

  • Hirose, K. et al. Watt-class high-power, high-beam-quality photonic-crystal lasers. Nat. Photon. 8, 406–411 (2014).

    Article  CAS  Google Scholar 

  • Sakata, R. et al. Photonic-crystal surface-emitting lasers with modulated photonic crystals enabling 2D beam scanning and various beam pattern emission. Appl. Phys. Lett. 122, 130503 (2023).

  • Pinchetti, V. et al. Effect of core/shell interface on carrier dynamics and optical gain properties of dual-color emitting CdSe/CdS nanocrystals. ACS Nano 10, 6877–6887 (2016).

    Article  CAS  Google Scholar 

  • Zhu, Y. et al. On-chip single-mode distributed feedback colloidal quantum dot laser under nanosecond pumping. ACS Photon. 4, 2446–2452 (2017).

    Article  CAS  Google Scholar 

  • Adachi, M. M. et al. Microsecond-sustained lasing from colloidal quantum dot solids. Nat. Commun. 6, 8694 (2015).

    Article  CAS  Google Scholar 

  • Chen, K., Gallaher, J. K., Barker, A. J. & Hodgkiss, J. M. Transient grating photoluminescence spectroscopy: an ultrafast method of gating broadband spectra. J. Phys. Chem. Lett. 5, 1732–1737 (2014).

    Article  CAS  Google Scholar 

  • Pelant, I. & Valenta, J. Luminescence Spectroscopy of Semiconductors (Oxford Univ. Press, 2012).

  • Geiregat, P. et al. Coulomb shifts upon exciton addition to photoexcited PbS colloidal quantum dots. J. Phys. Chem. C 118, 22284–22290 (2014).

    Article  CAS  Google Scholar 

  • Dneprovskii, V. S., Klimov, V. I. & Novikov, M. G. Dynamics and mechanisms of recombination of electron-hole plasma and high-density excitons in CdS and CdSe. Sov. Phys. JETP 3, 468–478 (1991).

    Google Scholar 

  • Tränkle, B. et al. Dimensionality dependence of the band-gap renomalization in two- and three dimensional electron-hole plasmas. Phys. Rev. Lett. 58, 419 (1987).

  • Saito, H. & Göbel, E. Picosecond spectroscopy of highly excited Cds. Phys. Rev. B 31, 2360–2369 (1985).

    Article  CAS  Google Scholar 

  • Asano, K. & Yoshioka, T. Exciton-Mott physics in two-dimensional electron-hole systems: phase diagram and single-particle spectra. J. Phys. Soc. Jpn 82, 084702 (2014).

    Article  Google Scholar 

  • Melnychuk, C. & Guyot-Sionnest, P. Multicarrier dynamics in quantum dots. Chem. Rev. 121, 2325–2372 (2021).

    Article  CAS  Google Scholar 

  • Aubert, T. et al. Homogeneously alloyed CdSeS quantum dots: an efficient synthesis for full optical tunability. Chem. Mater. 25, 2388–2390 (2013).

    Article  CAS  Google Scholar 

  • Liu, Y. K. et al. Wavelength-tunable lasing in single-crystal CdS1–XSeX nanoribbons. Nanotechnology 18, 365606 (2007).

  • Time Stamp:

    More from Nature Nanotechnology