Operando characterization and regulation of metal dissolution and redeposition dynamics near battery electrode surface

Operando characterization and regulation of metal dissolution and redeposition dynamics near battery electrode surface

Source Node: 2599949
  • Thackeray, M. M. & Amine, K. LiMn2O4 spinel and substituted cathodes. Nat. Energy 6, 566 (2021).

    Article  CAS  Google Scholar 

  • Kim, D. K. et al. Spinel LiMn2O4 nanorods as lithium ion battery cathodes. Nano Lett. 8, 3948–3952 (2008).

    Article  CAS  Google Scholar 

  • Xia, H., Luo, Z. & Xie, J. Nanostructured LiMn2O4 and their composites as high-performance cathodes for lithium-ion batteries. Prog. Nat. Sci.: Mater. Int. 22, 572–584 (2012).

    Article  Google Scholar 

  • Lun, Z. et al. Design principles for high-capacity Mn-based cation-disordered rocksalt cathodes. Chem 6, 153–168 (2020).

    Article  CAS  Google Scholar 

  • Li, H. et al. Toward high-energy Mn-based disordered-rocksalt Li-ion cathodes. Joule 6, 53–91 (2022).

    Article  Google Scholar 

  • Zhang, Y. et al. Investigating particle size‐dependent redox kinetics and charge distribution in disordered rocksalt cathodes. Adv. Funct. Mater. 32, 2110502 (2022).

    Article  CAS  Google Scholar 

  • Sun, X., Xiao, R., Yu, X. & Li, H. First-principles simulations for the surface evolution and Mn dissolution in the fully delithiated spinel LiMn2O4. Langmuir 37, 5252–5259 (2021).

    Article  CAS  Google Scholar 

  • Zhan, C., Wu, T., Lu, J. & Amine, K. Dissolution, migration, and deposition of transition metal ions in Li-ion batteries exemplified by Mn-based cathodes—a critical review. Energy Environ. Sci. 11, 243–257 (2018).

    Article  CAS  Google Scholar 

  • Tang, D. et al. Surface structure evolution of LiMn2O4 cathode material upon charge/discharge. Chem. Mater. 26, 3535–3543 (2014).

    Article  CAS  Google Scholar 

  • Zhou, G. et al. Mn ion dissolution mechanism for lithium-ion battery with LiMn2O4 cathode: in situ ultraviolet–visible spectroscopy and ab initio molecular dynamics simulations. J. Phys. Chem. Lett. 11, 3051–3057 (2020).

    Article  CAS  Google Scholar 

  • Zhu, X. et al. LiMnO2 cathode stabilized by interfacial orbital ordering for sustainable lithium-ion batteries. Nat. Sustain. 4, 392–401 (2021).

    Article  Google Scholar 

  • Lin, R. et al. Characterization of the structure and chemistry of the solid–electrolyte interface by cryo-EM leads to high-performance solid-state Li-metal batteries. Nat. Nanotechnol. 17, 768–776 (2022).

    Article  CAS  Google Scholar 

  • Cao, L. et al. Fluorinated interphase enables reversible aqueous zinc battery chemistries. Nat. Nanotechnol. 16, 902–910 (2021).

    Article  CAS  Google Scholar 

  • Liu, T. et al. In situ quantification of interphasial chemistry in Li-ion battery. Nat. Nanotechnol. 14, 50–56 (2019).

    Article  CAS  Google Scholar 

  • Xiang, Y. et al. Quantitatively analyzing the failure processes of rechargeable Li metal batteries. Sci. Adv. 7, eabj3423 (2021).

    Article  CAS  Google Scholar 

  • Liu, T. et al. Correlation between manganese dissolution and dynamic phase stability in spinel-based lithium-ion battery. Nat. Commun. 10, 4721 (2019).

    Article  Google Scholar 

  • Xu, C. et al. Bulk fatigue induced by surface reconstruction in layered Ni-rich cathodes for Li-ion batteries. Nat. Mater. 20, 84–92 (2021).

    Article  CAS  Google Scholar 

  • Lin, F. et al. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries. Nat. Commun. 5, 3529 (2014).

    Article  Google Scholar 

  • Liu, X. et al. Distinct charge dynamics in battery electrodes revealed by in situ and operando soft X-ray spectroscopy. Nat. Commun. 4, 2568 (2013).

    Article  Google Scholar 

  • Yuan, Y., Amine, K., Lu, J. & Shahbazian-Yassar, R. Understanding materials challenges for rechargeable ion batteries with in situ transmission electron microscopy. Nat. Commun. 8, 15806 (2017).

    Article  CAS  Google Scholar 

  • Jaumaux, P. et al. Localized water‐in‐salt electrolyte for aqueous lithium‐ion batteries. Angew. Chem. Int. Ed. 60, 19965–19973 (2021).

    Article  CAS  Google Scholar 

  • Suo, L. et al. ‘Water-in-salt’ electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350, 938–943 (2015).

    Article  CAS  Google Scholar 

  • Xu, J. et al. Aqueous electrolyte design for super-stable 2.5 V LiMn2O4 || Li4Ti5O12 pouch cells. Nat. Energy 7, 186–193 (2022).

    Article  CAS  Google Scholar 

  • Xie, J., Liang, Z. & Lu, Y.-C. Molecular crowding electrolytes for high-voltage aqueous batteries. Nat. Mater. 19, 1006–1011 (2020).

    Article  CAS  Google Scholar 

  • Wang, C. et al. Overlooked electrolyte destabilization by manganese (ii) in lithium-ion batteries. Nat. Commun. 10, 3423 (2019).

    Article  Google Scholar 

  • Leifer, N. et al. Studies of spinel-to-layered structural transformations in LiMn2O4 electrodes charged to high voltages. J. Phys. Chem. C 121, 9120–9130 (2017).

    Article  CAS  Google Scholar 

  • Vissers, D. R. et al. Role of manganese deposition on graphite in the capacity fading of lithium ion batteries. ACS Appl. Mater. Interfaces 8, 14244–14251 (2016).

    Article  CAS  Google Scholar 

  • Ren, Q., Yuan, Y. & Wang, S. Interfacial strategies for suppression of Mn dissolution in rechargeable battery cathode materials. ACS Appl. Mater. Interfaces 14, 23022–23032 (2021).

  • Xu, W. et al. Understanding the effect of Al doping on the electrochemical performance improvement of the LiMn2O4 cathode material. ACS Appl. Mater. Interfaces 13, 45446–45454 (2021).

    Article  CAS  Google Scholar 

  • Lee, S., Cho, Y., Song, H., Lee, K. T. & Cho, J. Carbon‐coated single‐crystal LiMn2O4 nanoparticle clusters as cathode material for high‐energy and high‐power lithium‐ion batteries. Angew. Chem. Int. Ed. 51, 8748–8752 (2012).

    Article  CAS  Google Scholar 

  • Wandt, J. et al. Transition metal dissolution and deposition in Li-ion batteries investigated by operando X-ray absorption spectroscopy. J. Mater. Chem. A 4, 18300–18305 (2016).

    Article  CAS  Google Scholar 

  • Gao, X. et al. Oxygen loss and surface degradation during electrochemical cycling of lithium-ion battery cathode material LiMn2O4. J. Mater. Chem. A 7, 8845–8854 (2019).

    Article  CAS  Google Scholar 

  • Santo, K. P. & Neimark, A. V. Effects of metal-polymer complexation on structure and transport properties of metal-substituted polyelectrolyte membranes. J. Colloid Interface Sci. 602, 654–668 (2021).

    Article  CAS  Google Scholar 

  • Kumar, R., Pasupathi, S., Pollet, B. G. & Scott, K. Nafion-stabilised platinum nanoparticles supported on titanium nitride: an efficient and durable electrocatalyst for phosphoric acid based polymer electrolyte fuel cells. Electrochim. Acta 109, 365–369 (2013).

    Article  CAS  Google Scholar 

  • Kuai, C. et al. Phase segregation reversibility in mixed-metal hydroxide water oxidation catalysts. Nat. Catal. 3, 743–753 (2020).

    Article  CAS  Google Scholar 

  • Yang, Y. et al. Quantification of heterogeneous degradation in Li‐ion batteries. Adv. Energy Mater. 9, 1900674 (2019).

    Article  Google Scholar 

  • Li, J. et al. Dynamics of particle network in composite battery cathodes. Science 376, 517–521 (2022).

    Article  CAS  Google Scholar 

  • Jang, D. H. & Oh, S. M. Electrolyte effects on spinel dissolution and cathodic capacity losses in 4 V Li/LixMn2O4 rechargeable cells. J. Electrochem. Soc. 144, 3342 (1997).

    Article  CAS  Google Scholar 

  • Sarapuu, A., Hussain, S., Kasikov, A., Pollet, B. G. & Tammeveski, K. Electroreduction of oxygen on Nafion®-coated thin platinum films in acid media. J. Electroanal. Chem. 848, 113292 (2019).

    Article  CAS  Google Scholar 

  • Yang, C. et al. A novel approach to fabricate membrane electrode assembly by directly coating the Nafion ionomer on catalyst layers for proton-exchange membrane fuel cells. ACS Sustain. Chem. Eng. 8, 9803–9812 (2020).

    Article  CAS  Google Scholar 

  • Sharma, P. P. & Kim, D. A facile and sustainable enhancement of anti-oxidation stability of Nafion membrane. Membranes 12, 521 (2022).

    Article  CAS  Google Scholar 

  • Time Stamp:

    More from Nature Nanotechnology