Coherent control of a high-orbital hole in a semiconductor quantum dot - Nature Nanotechnology

Coherent control of a high-orbital hole in a semiconductor quantum dot – Nature Nanotechnology

Source Node: 2788036
  • Zrenner, A. et al. Coherent properties of a two-level system based on a quantum-dot photodiode. Nature 418, 612–614 (2002).

    Article  CAS  Google Scholar 

  • Press, D., Ladd, T. D., Zhang, B. & Yamamoto, Y. Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature 456, 218–221 (2008).

    Article  CAS  Google Scholar 

  • Fleischhauer, M., Imamoglu, A. & Marangos, J. P. Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77, 633–673 (2005).

    Article  CAS  Google Scholar 

  • Faraon, A. et al. Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade. Nat. Phys. 4, 859–863 (2008).

    Article  CAS  Google Scholar 

  • Michler, P. et al. A quantum dot single-photon turnstile device. Science 290, 2282–2285 (2000).

    Article  CAS  Google Scholar 

  • Ding, X. et al. On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Phys. Rev. Lett. 116, 020401 (2016).

    Article  Google Scholar 

  • Tomm, N. et al. A bright and fast source of coherent single photons. Nat. Nanotechnol. 16, 399–403 (2021).

    Article  CAS  Google Scholar 

  • Liu, F. et al. High Purcell factor generation of indistinguishable on-chip single photons. Nat. Nanotechnol. 13, 835–840 (2018).

    Article  CAS  Google Scholar 

  • Huber, D. et al. Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots. Nat. Commun. 8, 15506 (2017).

    Article  CAS  Google Scholar 

  • Liu, J. et al. A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability. Nat. Nanotechnol. 14, 586–593 (2019).

    Article  CAS  Google Scholar 

  • Sun, S., Kim, H., Luo, Z., Solomon, G. S. & Waks, E. A single-photon switch and transistor enabled by a solid-state quantum memory. Science 361, 57–60 (2018).

    Article  CAS  Google Scholar 

  • Jeannic, H. L. et al. Dynamical photon–photon interaction mediated by a quantum emitter. Nat. Phys. 18, 1191–1195 (2022).

    Article  CAS  Google Scholar 

  • Li, X. et al. An all-optical quantum gate in a semiconductor quantum dot. Science 301, 809–811 (2003).

    Article  CAS  Google Scholar 

  • Pelucchi, E. et al. The potential and global outlook of integrated photonics for quantum technologies. Nat. Rev. Phys. 4, 194–208 (2021).

    Article  Google Scholar 

  • Bayer, M. et al. Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots. Phys. Rev. B 65, 195315 (2002).

    Article  Google Scholar 

  • Zibik, E. A. et al. Long lifetimes of quantum-dot intersublevel transitions in the terahertz range. Nat. Mater. 8, 803–807 (2009).

    Article  CAS  Google Scholar 

  • Löbl, M. C. et al. Radiative Auger process in the single-photon limit. Nat. Nanotechnol. 15, 558–562 (2020).

    Article  Google Scholar 

  • Qian, C. et al. Enhanced strong interaction between nanocavities and p-shell excitons beyond the dipole approximation. Phys. Rev. Lett. 122, 087401 (2019).

    Article  CAS  Google Scholar 

  • Volz, T. et al. Ultrafast all-optical switching by single photons. Nat. Photonics 6, 605–609 (2012).

    Article  Google Scholar 

  • Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

    Article  CAS  Google Scholar 

  • Litvinenko, K. et al. Coherent creation and destruction of orbital wavepackets in Si:P with electrical and optical read-out. Nat. Commun. 6, 6549 (2015).

    Article  CAS  Google Scholar 

  • Qin, Q., Williams, B. S., Kumar, S., Reno, J. L. & Hu, Q. Tuning a terahertz wire laser. Nat. Photonics 3, 732–737 (2009).

    Article  CAS  Google Scholar 

  • Täschler, P. et al. Femtosecond pulses from a mid-infrared quantum cascade laser. Nat. Photonics 15, 919–924 (2021).

    Article  Google Scholar 

  • Åberg, T. & Utriainen, J. Evidence for a ‘radiative Auger effect’ in X-ray photon emission. Phys. Rev. Lett. 22, 1346–1348 (1969).

    Article  Google Scholar 

  • Nash, K. J., Skolnick, M. S., Saker, M. K. & Bass, S. J. Many body shakeup in quantum well luminescence spectra. Phys. Rev. Lett. 70, 3115–3118 (1993).

    Article  CAS  Google Scholar 

  • Paskov, P. et al. Auger processes in InAs self-assembled quantum dots. Physica E Low Dimens. Syst. Nanostruct. 6, 440–443 (2000).

    Article  CAS  Google Scholar 

  • Antolinez, F. V., Rabouw, F. T., Rossinelli, A. A., Cui, J. & Norris, D. J. Observation of electron shakeup in CdSe/CdS core/shell nanoplatelets. Nano Lett. 19, 8495–8502 (2019).

    Article  CAS  Google Scholar 

  • Spinnler, C. et al. Optically driving the radiative Auger transition. Nat. Commun. 12, 6575 (2021).

    Article  CAS  Google Scholar 

  • Cygorek, M., Korkusinski, M. & Hawrylak, P. Atomistic theory of electronic and optical properties of InAsP/InP nanowire quantum dots. Phys. Rev. B 101, 075307 (2020).

    Article  CAS  Google Scholar 

  • Zieliński, M., Korkusiński, M. & Hawrylak, P. Atomistic tight-binding theory of multiexciton complexes in a self-assembled InAs quantum dot. Phys. Rev. B 81, 085301 (2010).

    Article  Google Scholar 

  • Holtkemper, M., Reiter, D. E. & Kuhn, T. Influence of the quantum dot geometry on p-shell transitions in differently charged quantum dots. Phys. Rev. B 97, 075308 (2018).

    Article  CAS  Google Scholar 

  • Reindl, M. et al. Highly indistinguishable single photons from incoherently excited quantum dots. Phys. Rev. B 100, 155420 (2019).

    Article  CAS  Google Scholar 

  • Gawarecki, K. et al. Structural symmetry-breaking to explain radiative Auger transitions in self-assembled quantum dots. Preprint at arXiv https://doi.org/10.48550/arXiv.2208.12069 (2022).

  • Iles-Smith, J., McCutcheon, D. P. S., Nazir, A. & Mørk, J. Phonon scattering inhibits simultaneous near-unity efficiency and indistinguishability in semiconductor single-photon sources. Nat. Photonics 11, 521–526 (2017).

    Article  CAS  Google Scholar 

  • Roy, C. & Hughes, S. Influence of electron–acoustic-phonon scattering on intensity power broadening in a coherently driven quantum-dot-cavity system. Phys. Rev. X 1, 021009 (2011).

    Google Scholar 

  • Reigue, A. et al. Probing electron–phonon interaction through two-photon interference in resonantly driven semiconductor quantum dots. Phys. Rev. Lett. 118, 233602 (2017).

    Article  Google Scholar 

  • De Greve, K. et al. Ultrafast coherent control and suppressed nuclear feedback of a single quantum dot hole qubit. Nat. Phys. 7, 872–878 (2011).

    Article  Google Scholar 

  • Greilich, A., Carter, S. G., Kim, D., Bracker, A. S. & Gammon, D. Optical control of one and two hole spins in interacting quantum dots. Nat. Photonics 5, 702–708 (2011).

    Article  CAS  Google Scholar 

  • Godden, T. M. et al. Coherent optical control of the spin of a single hole in an InAs/GaAs quantum dot. Phys. Rev. Lett. 108, 017402 (2012).

    Article  CAS  Google Scholar 

  • Greve, K. D., Press, D., McMahon, P. L. & Yamamoto, Y. Ultrafast optical control of individual quantum dot spin qubits. Rep. Prog. Phys. 76, 092501 (2013).

    Article  Google Scholar 

  • Ramsay, A. J. et al. Damping of exciton rabi rotations by acoustic phonons in optically excited InGaAs/GaAs quantum dots. Phys. Rev. Lett. 104, 017402 (2010).

    Article  CAS  Google Scholar 

  • Tredicucci, A. Long life in zero dimensions. Nat. Mater. 8, 775–776 (2009).

    Article  CAS  Google Scholar 

  • Jin, C. Y. et al. Vertical-geometry all-optical switches based on InAs/GaAs quantum dots in a cavity. Appl. Phys. Lett. 95, 021109 (2009).

    Article  Google Scholar 

  • Vurgaftman, I. & Singh, J. Effect of spectral broadening and electron hole scattering on carrier relaxation in GaAs quantum dots. Appl. Phys. Lett. 64, 232–234 (1994).

    Article  CAS  Google Scholar 

  • Cogan, D., Su, Z.-E., Kenneth, O. & Gershoni, D. Deterministic generation of indistinguishable photons in a cluster state. Nat. Photonics 17, 324–329 (2023).

    Article  CAS  Google Scholar 

  • Efros, A. L., Kharchenko, V. & Rosen, M. Breaking the phonon bottleneck in nanometer quantum dots: role of Auger-like processes. Solid State Commun. 93, 281–284 (1995).

    Article  CAS  Google Scholar 

  • Hopfmann, C. et al. Heralded preparation of spin qubits in droplet-etched GaAs quantum dots using quasiresonant excitation. Phys. Rev. B 104, 075301 (2021).

    Article  CAS  Google Scholar 

  • Benisty, H., Sotomayor-Torrès, C. M. & Weisbuch, C. Intrinsic mechanism for the poor luminescence properties of quantum-box systems. Phys. Rev. B 44, 10945–10948 (1991).

    Article  CAS  Google Scholar 

  • Urayama, J., Norris, T. B., Singh, J. & Bhattacharya, P. Observation of phonon bottleneck in quantum dot electronic relaxation. Phys. Rev. Lett. 86, 4930–4933 (2001).

    Article  CAS  Google Scholar 

  • Madsen, K. H. et al. Measuring the effective phonon density of states of a quantum dot in cavity quantum electrodynamics. Phys. Rev. B 88, 045316 (2013).

    Article  Google Scholar 

  • Reiter, D. E., Kuhn, T. & Axt, V. M. Distinctive characteristics of carrier–phonon interactions in optically driven semiconductor quantum dots. Adv. Phys. X 4, 1655478 (2019).

    CAS  Google Scholar 

  • Pan, D., Towe, E., Kennerly, S. & Kong, M.-Y. Tuning of conduction intersublevel absorption wavelengths in (In, Ga)As/GaAs quantum-dot nanostructures. Appl. Phys. Lett. 76, 3537–3539 (2000).

    Article  CAS  Google Scholar 

  • Zibik, E. A. et al. Effects of alloy intermixing on the lateral confinement potential in InAs/GaAs self-assembled quantum dots probed by intersublevel absorption spectroscopy. Appl. Phys. Lett. 90, 163107 (2007).

    Article  Google Scholar 

  • Monroe, C., Meekhof, D. M., King, B. E., Itano, W. M. & Wineland, D. J. Demonstration of a fundamental quantum logic gate. Phys. Rev. Lett. 75, 4714–4717 (1995).

    Article  CAS  Google Scholar 

  • Kaldewey, T. et al. Far-field nanoscopy on a semiconductor quantum dot via a rapid-adiabatic-passage-based switch. Nat. Photonics 12, 68–72 (2018).

    Article  CAS  Google Scholar 

  • Kianinia, M. et al. All-optical control and super-resolution imaging of quantum emitters in layered materials. Nat. Commun. 9, 874 (2018).

    Article  Google Scholar 

  • Chen, P. et al. Approaching the intrinsic exciton physics limit in two-dimensional semiconductor diodes. Nature 599, 404–410 (2021).

    Article  CAS  Google Scholar 

  • Chow, C. M. E. et al. Monolayer semiconductor auger detector. Nano Lett. 20, 5538–5543 (2020).

    Article  CAS  Google Scholar 

  • Babin, H. G. et al. Charge tunable GaAs quantum dots in a photonic n-i-p diode. Nanomaterials 11, 2703 (2021).

    Article  CAS  Google Scholar 

  • Zhai, L. et al. Low-noise GaAs quantum dots for quantum photonics. Nat. Commun. 11, 4745 (2020).

    Article  CAS  Google Scholar 

  • Babin, H.-G. et al. Full wafer property control of local droplet etched GaAs quantum dots. J. Cryst. Growth 591, 126713 (2022).

    Article  CAS  Google Scholar 

  • Kuhlmann, A. V. et al. A dark-field microscope for background-free detection of resonance fluorescence from single semiconductor quantum dots operating in a set-and-forget mode. Rev. Sci. Instrum. 84, 073905 (2013).

    Article  Google Scholar 

  • Yan, J. et al. Double-pulse generation of indistinguishable single photons with optically controlled polarization. Nano Lett. 22, 1483–1490 (2022).

    Article  CAS  Google Scholar 

  • Time Stamp:

    More from Nature Nanotechnology