Inferring scale-dependent non-equilibrium activity using carbon nanotubes

Inferring scale-dependent non-equilibrium activity using carbon nanotubes

Source Node: 2639824
  • Needleman, D. & Dogic, Z. Active matter at the interface between materials science and cell biology. Nat. Rev. Mater. 2, 17048 (2017).

    Article  CAS  Google Scholar 

  • Ramaswamy, S. The mechanics and statistics of active matter. Annu. Rev. Condens. Matter Phys. 1, 323–345 (2010).

    Article  Google Scholar 

  • Marchetti, M. et al. Hydrodynamics of soft active matter. Rev. Mod. Phys. 85, 1143–1189 (2013).

    Article  CAS  Google Scholar 

  • Bowick, M., Fakhri, N., Marchetti, M. & Ramaswamy, S. Symmetry, thermodynamics, and topology in active matter. Phys. Rev. X 12, 010501 (2022).

    CAS  Google Scholar 

  • Yang, X. et al. Physical bioenergetics: energy fluxes, budgets, and constraints in cells. Proc. Natl Acad. Sci. USA 118, e2026786118 (2021).

    Article  CAS  Google Scholar 

  • Tan, T. et al. Self-organized stress patterns drive state transitions in actin cortices. Sci. Adv. 4, eaar2847 (2018).

    Article  Google Scholar 

  • Gladrow, J., Fakhri, N., MacKintosh, F. C., Schmidt, C. F. & Broedersz, C. P. Broken detailed balance of filament dynamics in active networks. Phys. Rev. Lett. 116, 248301 (2016).

    Article  CAS  Google Scholar 

  • Landau, L., Lifshitz, E., Sykes, J., & Reid, W. Theory of Elasticity (Addison-Wesley 1959).

  • Brangwynne, C. P., Koenderink, G. H., MacKintosh, F. C. & Weitz, D. A. Nonequilibrium microtubule fluctuations in a model cytoskeleton. Phys. Rev. Lett. 100, 118104 (2008).

    Article  Google Scholar 

  • England, J. L. Dissipative adaptation in driven self-assembly. Nat. Nanotechnol. 10, 919–923 (2015).

    Article  CAS  Google Scholar 

  • Mizuno, D., Tardin, C., Schmidt, C. F. & MacKintosh, F. C. Nonequilibrium mechanics of active cytoskeletal networks. Science 315, 370–373 (2007).

    Article  CAS  Google Scholar 

  • Battle, C. et al. Broken detailed balance at mesoscopic scales in active biological systems. Science 352, 604–607 (2016).

    Article  CAS  Google Scholar 

  • Egolf, D. A. Equilibrium regained: from nonequilibrium chaos to statistical mechanics. Science 287, 101–104 (2000).

    Article  CAS  Google Scholar 

  • Prost, J., Jülicher, F. & Joanny, J-F. Active gel physics. Nat. Phys. 11, 111–117 (2015).

    Article  CAS  Google Scholar 

  • O’Byrne, J., Kafri, Y., Tailleur, J. & van Wijland, F. Time irreversibility in active matter, from micro to macro. Nat. Rev. Phys. 4, 167–183 (2022).

    Article  Google Scholar 

  • Gnesotto, F. S., Mura, F., Gladrow, J. & Broedersz, C. P. Broken detailed balance and non-equilibrium dynamics in living systems: a review. Rep. Prog. Phys. 81, 066601 (2018).

    Article  CAS  Google Scholar 

  • Fakhri, N. et al. High-resolution mapping of intracellular fluctuations using carbon nanotubes. Science 344, 1031–1035 (2014).

    Article  CAS  Google Scholar 

  • Fakhri, N., Tsyboulski, D. A., Cognet, L., Weisman, R. B. & Pasquali, M. Diameter-dependent bending dynamics of single-walled carbon nanotubes in liquids. Proc. Natl Acad. Sci. USA 106, 14219–14223 (2009).

    Article  CAS  Google Scholar 

  • Fakhri, N., MacKintosh, F. C., Lounis, B., Cognet, L. & Pasquali, M. Brownian motion of stiff filaments in a crowded environment. Science 330, 1804–1807 (2010).

    Article  CAS  Google Scholar 

  • Murrell, M. P. & Gardel, M. L. F-actin buckling coordinates contractility and severing in a biomimetic actomyosin cortex. Proc. Natl Acad. Sci. USA 109, 20820–20825 (2012).

    Article  CAS  Google Scholar 

  • Weiss, J. B. Coordinate invariance in stochastic dynamical systems. Tellus A 55, 208–218 (2003).

    Article  Google Scholar 

  • Crooks, G. E. Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. Phys. Rev. E 60, 2721–2726 (1999).

    Article  CAS  Google Scholar 

  • Ro, S. et al. Model-free measurement of local entropy production and extractable work in active matter. Phys. Rev. Lett. 129, 220601 (2022).

    Article  CAS  Google Scholar 

  • Harunari, P. E., Dutta, A., Polettini, M. & Roldán, É. What to learn from a few visible transitions' statistics? Phys. Rev. X 12, 041026 (2022).

    CAS  Google Scholar 

  • van der Meer, J., Ertel, B. & Seifert, U. Thermodynamic inference in partially accessible Markov networks: a unifying perspective from transition-based waiting time distributions. Preprint at https://arxiv.org/abs/2203.07427 (2022).

  • van der Meer, J., Degünther, J. & Seifert, U. Time-resolved statistics of snippets as general framework for model-free entropy estimators. Preprint at https://arxiv.org/abs/2211.17032 (2022).

  • Roldán, E., Barral, J., Martin, P., Parrondo, J. M. R. & Jülicher, F. Quantifying entropy production in active fluctuations of the hair-cell bundle from time irreversibility and uncertainty relations. New J. Phys. 23, 083013 (2021).

    Article  Google Scholar 

  • Tucci, G. et al. Modeling active non-Markovian oscillations. Phys. Rev. Lett. 129, 030603 (2022).

    Article  CAS  Google Scholar 

  • Skinner, D. J. & Dunkel, J. Improved bounds on entropy production in living systems. Proc. Natl Acad. Sci. USA 118, e2024300118 (2021).

    Article  CAS  Google Scholar 

  • Weiss, J. B., Fox-Kemper, B., Mandal, D., Nelson, A. D. & Zia, R. K. P. Nonequilibrium oscillations, probability angular momentum, and the climate system. J. Stat. Phys. 179, 1010–1027 (2020).

    Article  Google Scholar 

  • Gonzalez, J. P., Neu, J. C. & Teitsworth, S. W. Experimental metrics for detection of detailed balance violation. Phys. Rev. E 99, 022143 (2019).

    Article  CAS  Google Scholar 

  • Zia, R. K. P., Weiss, J. B., Mandal, D. & Fox-Kemper, B. Manifest and subtle cyclic behavior in nonequilibrium steady states. J. Phys. Conf. Ser. 750, 012003 (2016).

    Article  Google Scholar 

  • Li, J., Horowitz, J. M., Gingrich, T. R. & Fakhri, N. Quantifying dissipation using fluctuating currents. Nat. Commun. 10, 1666 (2019).

    Article  Google Scholar 

  • Guo, M. et al. Probing the stochastic, motor-driven properties of the cytoplasm using force spectrum microscopy. Cell 158, 822–832 (2014).

    Article  CAS  Google Scholar 

  • MacKintosh, F. C. & Levine, A. J. Nonequilibrium mechanics and dynamics of motor-activated gels. Phys. Rev. Lett. 100, 018104 (2008).

    Article  CAS  Google Scholar 

  • Malik-Garbi, M. et al. Scaling behaviour in steady-state contracting actomyosin networks. Nat. Phys. 15, 509–516 (2019).

    Article  CAS  Google Scholar 

  • MacKintosh, F. C., Käs, J. & Janmey, P. A. Elasticity of semiflexible biopolymer networks. Phys. Rev. Lett. 75, 4425–4428 (1995).

    Article  CAS  Google Scholar 

  • Valentine, M. T., Perlman, Z. E., Mitchison, T. J. & Weitz, D. A. Mechanical properties of Xenopus egg cytoplasmic extracts. Biophys. J. 88, 680–689 (2005).

    Article  CAS  Google Scholar 

  • Field, C. M., Pelletier, J. F. & Mitchison, T. J. in Methods in Cell Biology: Cytokinesis Vol. 137 (ed. Echard, A.) 395–435 (Academic, 2017).

  • Riedl, J. et al. Lifeact: a versatile marker to visualize F-actin. Nat. Methods 5, 605–607 (2008).

    Article  CAS  Google Scholar 

  • Chen, D. T., Heymann, M., Fraden, S., Nicastro, D. & Dogic, Z. ATP consumption of eukaryotic flagella measured at a single-cell level. Biophys. J. 109, 2562–2573 (2015).

    Article  CAS  Google Scholar 

  • Ruhnow, F., Zwicker, D. & Diez, S. Tracking single particles and elongated filaments with nanometer precision. Biophys. J. 100, 2820–2828 (2011).

    Article  CAS  Google Scholar 

  • Time Stamp:

    More from Nature Nanotechnology