An integrated microwave-to-optics interface for scalable quantum computing - Nature Nanotechnology

An integrated microwave-to-optics interface for scalable quantum computing – Nature Nanotechnology

Source Node: 2927708
  • Kimble, H. J. The quantum internet. Nature 453, 1023 (2008).

    Article  CAS  Google Scholar 

  • Wehner, S., Elkouss, D. & Hanson, R. Quantum internet: a vision for the road ahead. Science 362, eaam9288 (2018).

    Article  Google Scholar 

  • Alexeev, Y. et al. Quantum computer systems for scientific discovery. PRX Quantum 2, 017001 (2021).

    Article  Google Scholar 

  • Ladd, T. D. et al. Quantum computers. Nature 464, 45 (2010).

    Article  CAS  Google Scholar 

  • de Leon, N. P. et al. Materials challenges and opportunities for quantum computing hardware. Science 372, eabb2823 (2021).

    Article  Google Scholar 

  • Gambetta, J. IBM Research Blog https://research.ibm.com/blog/next-wave-quantum-centric-supercomputing (2022).

  • Awschalom, D. et al. Development of quantum interconnects (QuICs) for next-generation information technologies. PRX Quantum 2, 017002 (2021).

    Article  Google Scholar 

  • Krastanov, S. et al. Optically-heralded entanglement of superconducting systems in quantum networks. Phys. Rev. Lett. 127, 040503 (2021).

    Article  CAS  Google Scholar 

  • Bravyi, S., Dial, O., Gambetta, J. M., Gil, D. & Nazario, Z. The future of quantum computing with superconducting qubits. J. Appl. Phys. 132, 160902 (2022).

    Article  CAS  Google Scholar 

  • Magnard, P. et al. Microwave quantum link between superconducting circuits housed in spatially separated cryogenic systems. Phys. Rev. Lett. 125, 260502 (2020).

    Article  CAS  Google Scholar 

  • McKenna, T. P. et al. Cryogenic microwave-to-optical conversion using a triply resonant lithium-niobate-on-sapphire transducer. Optica 7, 1737 (2020).

    Article  Google Scholar 

  • Xu, Y. et al. Bidirectional interconversion of microwave and light with thin-film lithium niobate. Nat. Commun. 12, 4453 (2021).

    Article  CAS  Google Scholar 

  • Sahu, R. et al. Quantum-enabled operation of a microwave-optical interface. Nat. Commun. 13, 1276 (2022).

    Article  CAS  Google Scholar 

  • Vainsencher, A., Satzinger, K. J., Peairs, G. A. & Cleland, A. N. Bi-directional conversion between microwave and optical frequencies in a piezoelectric optomechanical device. Appl. Phys. Lett. 109, 033107 (2016).

    Article  Google Scholar 

  • Jiang, W. et al. Efficient bidirectional piezo-optomechanical transduction between microwave and optical frequency. Nat. Commun. 11, 1166 (2020).

    Article  CAS  Google Scholar 

  • Mirhosseini, M., Sipahigil, A., Kalaee, M. & Painter, O. Superconducting qubit to optical photon transduction. Nature 588, 599 (2020).

    Article  CAS  Google Scholar 

  • Stockill, R. et al. Ultra-low-noise microwave to optics conversion in gallium phosphide. Nat. Commun. 13, 2496 (2022).

    Article  Google Scholar 

  • Higginbotham, A. P. et al. Electro-optic correlations improve an efficient mechanical converter. Nat. Phys. 14, 1038 (2018).

    Article  CAS  Google Scholar 

  • Arnold, G. et al. Converting microwave and telecom photons with a silicon photonic nanomechanical interface. Nat. Commun. 11, 4460 (2020).

    Article  CAS  Google Scholar 

  • Han, J. et al. Coherent microwave-to-optical conversion via six-wave mixing in Rydberg atoms. Phys. Rev. Lett. 120, 093201 (2018).

    Article  CAS  Google Scholar 

  • Fernandez-Gonzalvo, X., Horvath, S. P., Chen, Y. H. & Longdell, J. J. Cavity-enhanced Raman heterodyne spectroscopy in Er3+:Y2SiO5 for microwave to optical signal conversion. Phys. Rev. A 100, 033807 (2019).

    Article  CAS  Google Scholar 

  • Bartholomew, J. G. et al. On-chip coherent microwave-to-optical transduction mediated by ytterbium in YVO4. Nat. Commun. 11, 3266 (2020).

    Article  CAS  Google Scholar 

  • Hisatomi, R. et al. Bidirectional conversion between microwave and light via ferromagnetic magnons. Phys. Rev. B 93, 174427 (2016).

    Article  Google Scholar 

  • Lauk, N. et al. Perspectives on quantum transduction. Quantum Sci. Technol. 5, 20501 (2020).

    Article  Google Scholar 

  • Han, X., Fu, W., Zou, C.-L., Jiang, L. & Tang, H. X. Microwave-optical quantum frequency conversion. Optica 8, 1050 (2021).

    Article  Google Scholar 

  • Siddiqi, I. Engineering high-coherence superconducting qubits. Nat. Rev. Mat. 10, 875 (2021).

    Article  Google Scholar 

  • Krinner, S. et al. Realizing repeated quantum error correction in a distance-three surface code. Nature 605, 669 (2022).

    Article  CAS  Google Scholar 

  • Horsman, C., Fowler, A., Devitt, S. & van Meter, R. Surface code quantum computing by lattice surgery. New J. Phys. 14, 123011 (2012).

    Article  Google Scholar 

  • Beals, R. et al. Efficient distributed quantum computing. Proc. R. Soc. A 469, 20120686 (2013).

    Article  Google Scholar 

  • Krinner, S. et al. Engineering cryogenic setups for 100-qubit scale superconducting circuit systems. EPJ Quantum Technol. 6, 2 (2019).

    Article  Google Scholar 

  • Zeuthen, E., Schliesser, A., Sørensen, A. S. & Taylor, J. M. Figures of merit for quantum transducers. Quantum Sci. Technol. 5, 34009 (2020).

    Article  Google Scholar 

  • Brubaker, B. M. et al. Optomechanical ground-state cooling in a continuous and efficient electro-optic transducer. Phys. Rev. X 12, 021062 (2022).

    CAS  Google Scholar 

  • Jiang, W. et al. Optically heralded microwave photon addition. Nat. Phys. https://doi.org/10.1038/s41567-023-02129-w (2023).

  • Chan, J., Safavi-Naeini, A. H., Hill, J. T., Meenehan, S. & Painter, O. Optimized optomechanical crystal cavity with acoustic radiation shield. Appl. Phys. Lett. 101, 081115 (2012).

    Article  Google Scholar 

  • Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391 (2014).

    Article  Google Scholar 

  • Xu, M., Han, X., Fu, W., Zou, C.-L. & Tang, H. X. Frequency-tunable high-Q superconducting resonators via wireless control of nonlinear kinetic inductance. Appl. Phys. Lett. 114, 192601 (2019).

    Article  Google Scholar 

  • Kuwictsova, I. E., Zaitsev, B. D., Joshi, S. G. & Borodina, I. A. Investigation of acoustic waves in thin plates of lithium niobate and lithium tantalate. IEEE Trans. Ultrason., Ferroelectr., Freq. Control 48, 322 (2001).

    Article  Google Scholar 

  • Riedinger, R. et al. Non-classical correlations between single photons and phonons from a mechanical oscillator. Nature 530, 313 (2016).

    Article  CAS  Google Scholar 

  • Qiu, L., Shomroni, I., Seidler, P. & Kippenberg, T. J. Laser cooling of a nanomechanical oscillator to its zero-point energy. Phys. Rev. Lett. 124, 173601 (2020).

    Article  CAS  Google Scholar 

  • Lecocq, F. et al. Control and readout of a superconducting qubit using a photonic link. Nature 591, 575 (2021).

    Article  CAS  Google Scholar 

  • Delaney, R. D. et al. Superconducting-qubit readout via low-backaction electro-optic transduction. Nature 606, 489 (2022).

    Article  CAS  Google Scholar 

  • Time Stamp:

    More from Nature Nanotechnology