Emergence of layered nanoscale mesh networks through intrinsic molecular confinement self-assembly

Emergence of layered nanoscale mesh networks through intrinsic molecular confinement self-assembly

Source Node: 1889331
  • Bates, F. S. & Fredrickson, G. H. Block copolymers—designer soft materials. Phys. Today 52, 32–38 (1999).

    Article  CAS  Google Scholar 

  • Hamley, I. W. Nanostructure fabrication using block copolymers. Nanotechnology 14, R39–R54 (2003).

    Article  CAS  Google Scholar 

  • Segalman, R. A. Patterning with block copolymer thin films. Mater. Sci. Eng. R Rep. 48, 191–226 (2005).

    Article  Google Scholar 

  • Bolton, J., Bailey, T. S. & Rzayev, J. Large pore size nanoporous materials from the self-assembly of asymmetric bottlebrush block copolymers. Nano Lett. 11, 998–1001 (2011).

    Article  CAS  Google Scholar 

  • Kawamoto, K. et al. Graft-through synthesis and assembly of Janus bottlebrush polymers from A-branch-B diblock macromonomers. J. Am. Chem. Soc. 138, 11501–11504 (2016).

    Article  CAS  Google Scholar 

  • Cheng, L.-C. et al. Imparting superhydrophobicity with a hierarchical block copolymer coating. Small 16, 1905509 (2020).

    Article  CAS  Google Scholar 

  • Tavakkoli, K. G. et al. Multilayer block copolymer meshes by orthogonal self-assembly. Nat. Commun. 7, 10518 (2016).

    Article  Google Scholar 

  • Tavakkoli, K. G. et al. Templating three-dimensional self-assembled structures in bilayer block copolymer films. Science 336, 1294–1298 (2012).

    Article  CAS  Google Scholar 

  • Zhang, L. et al. A nanomesh scaffold for supramolecular nanowire optoelectronic devices. Nat. Nanotechnol. 11, 900–906 (2016).

    Article  CAS  Google Scholar 

  • Bai, X. et al. Room-temperature processing of silver submicron fiber mesh for flexible electronics. npj Flex. Electron. 2, 3 (2018).

    Article  Google Scholar 

  • Kim, S. Y. et al. Large-area nanosquare arrays from shear-aligned block copolymer thin films. Nano Lett. 14, 5698–5705 (2014).

    Article  CAS  Google Scholar 

  • Majewski, P. W., Rahman, A., Black, C. T. & Yager, K. G. Arbitrary lattice symmetries via block copolymer nanomeshes. Nat. Commun. 6, 7448 (2015).

    Article  Google Scholar 

  • Liu, R., Huang, H., Sun, Z., Alexander-Katz, A. & Ross, C. A. Metallic nanomeshes fabricated by multimechanism directed self-assembly. ACS Nano 15, 16266–16276 (2021).

    Article  CAS  Google Scholar 

  • Cha, S. K. et al. Nanopatterns with a square symmetry from an orthogonal lamellar assembly of block copolymers. ACS Appl. Mater. Interfaces 11, 20265–20271 (2019).

    Article  CAS  Google Scholar 

  • Subramanian, A., Tiwale, N., Doerk, G., Kisslinger, K. & Nam, C.-Y. Enhanced hybridization and nanopatterning via heated liquid-phase infiltration into self-assembled block copolymer thin films. ACS Appl. Mater. Interfaces 12, 1444–1453 (2020).

    Article  CAS  Google Scholar 

  • Jeong, J. W. et al. High-resolution nanotransfer printing applicable to diverse surfaces via interface-targeted adhesion switching. Nat. Commun. 5, 5387 (2014).

    Article  CAS  Google Scholar 

  • Chu, C. Y. et al. Real-space evidence of the equilibrium ordered bicontinuous double diamond structure of a diblock copolymer. Soft Matter 11, 1871–1876 (2015).

    Article  CAS  Google Scholar 

  • Chang, C.-Y. et al. Mesoscale networks and corresponding transitions from self-assembly of block copolymers. Proc. Natl Acad. Sci. USA 118, e2022275118 (2021).

    Article  CAS  Google Scholar 

  • Bailey, T. S., Hardy, C. M., Epps, T. H. & Bates, F. S. A noncubic triply periodic network morphology in poly(isoprene-b-styrene-b-ethylene oxide) triblock copolymers. Macromolecules 35, 7007–7017 (2002).

    Article  CAS  Google Scholar 

  • Takenaka, M. et al. Orthorhombic Fddd network in diblock copolymer melts. Macromolecules 40, 4399–4402 (2007).

    Article  CAS  Google Scholar 

  • Epps, T. H. et al. Ordered network phases in linear poly(isoprene-b-styrene-b-ethylene oxide) triblock copolymers. Macromolecules 37, 8325–8341 (2004).

    Article  CAS  Google Scholar 

  • Tyler, C. A. & Morse, D. C. Orthorhombic Fddd network in triblock and diblock copolymer melts. Phys. Rev. Lett. 94, 208302 (2005).

    Article  Google Scholar 

  • Meuler, A. J., Hillmyer, M. A. & Bates, F. S. Ordered network mesostructures in block polymer materials. Macromolecules 42, 7221–7250 (2009).

    Article  CAS  Google Scholar 

  • Bluemle, M. J., Fleury, G., Lodge, T. P. & Bates, F. S. The O52 network by molecular design: CECD tetrablock terpolymers. Soft Matter 5, 1587–1590 (2009).

    Article  CAS  Google Scholar 

  • Ding, Y. et al. Emergent symmetries in block copolymer epitaxy. Nat. Commun. 10, 2974 (2019).

    Article  Google Scholar 

  • Zheng, W. & Wang, Z.-G. Morphology of ABC triblock copolymers. Macromolecules 28, 7215–7223 (1995).

    Article  CAS  Google Scholar 

  • Mogi, Y. et al. Superlattice structures in morphologies of the ABC triblock copolymers. Macromolecules 27, 6755–6760 (1994).

    Article  CAS  Google Scholar 

  • Guo, Z.-H. et al. Janus graft block copolymers: design of a polymer architecture for independently tuned nanostructures and polymer properties. Angew. Chem. Int. Ed. 57, 8493–8497 (2018).

    Article  CAS  Google Scholar 

  • Liang, R. et al. Hierarchically engineered nanostructures from compositionally anisotropic molecular building blocks. Nat. Mater. 21, 1434–1440 (2022).

  • Chen, Y. Nanofabrication by electron beam lithography and its applications: a review. Microelectron. Eng. 135, 57–72 (2015).

    Article  CAS  Google Scholar 

  • Li, K. et al. High speed e-beam writing for large area photonic nanostructures—a choice of parameters. Sci. Rep. 6, 32945 (2016).

    Article  CAS  Google Scholar 

  • Sinturel, C., Bates, F. S. & Hillmyer, M. A. High χ–low N block polymers: how far can we go? ACS Macro Lett. 4, 1044–1050 (2015).

    Article  CAS  Google Scholar 

  • Jung, Y. S. & Ross, C. A. Orientation-controlled self-assembled nanolithography using a polystyrene−polydimethylsiloxane block copolymer. Nano Lett. 7, 2046–2050 (2007).

    Article  CAS  Google Scholar 

  • Gu, W., Hong, S. W. & Russell, T. P. Orienting block copolymer microdomains with block copolymer brushes. ACS Nano 6, 10250–10257 (2012).

    Article  CAS  Google Scholar 

  • Gotrik, K. W. et al. Morphology control in block copolymer films using mixed solvent vapors. ACS Nano 6, 8052–8059 (2012).

    Article  CAS  Google Scholar 

  • Gu, X., Gunkel, I., Hexemer, A., Gu, W. & Russell, T. P. An in situ grazing incidence X-ray scattering study of block copolymer thin films during solvent vapor annealing. Adv. Mater. 26, 273–281 (2014).

    Article  CAS  Google Scholar 

  • Lee, S. et al. Resolving triblock terpolymer morphologies by vapor-phase infiltration. Chem. Mater. 32, 5309–5316 (2020).

    Article  CAS  Google Scholar 

  • Son, J. G., Gotrik, K. W. & Ross, C. A. High-aspect-ratio perpendicular orientation of PS-b-PDMS thin films under solvent annealing. ACS Macro Lett. 1, 1279–1284 (2012).

    Article  CAS  Google Scholar 

  • Gotrik, K. W. et al. 3D TEM tomography of templated bilayer films of block copolymers. Adv. Funct. Mater. 24, 7689–7697 (2014).

    Article  CAS  Google Scholar 

  • Huang, H. & Alexander-Katz, A. Dissipative particle dynamics for directed self-assembly of block copolymers. J. Chem. Phys. 151, 154905 (2019).

    Article  Google Scholar 

  • Martínez-Veracoechea, F. J. & Escobedo, F. A. Simulation of the gyroid phase in off-lattice models of pure diblock copolymer melts. J. Chem. Phys. 125, 104907 (2006).

    Article  Google Scholar 

  • Hannon, A. F., Bai, W., Alexander-Katz, A. & Ross, C. A. Simulation methods for solvent vapor annealing of block copolymer thin films. Soft Matter 11, 3794–3805 (2015).

    Article  CAS  Google Scholar 

  • Vohidov, F. et al. ABC triblock bottlebrush copolymer-based injectable hydrogels: design, synthesis, and application to expanding the therapeutic index of cancer immunochemotherapy. Chem. Sci. 11, 5974–5986 (2020).

    Article  CAS  Google Scholar 

  • Sanford, M. S., Love, J. A. & Grubbs, R. H. A versatile precursor for the synthesis of new ruthenium olefin metathesis catalysts. Organometallics 20, 5314–5318 (2001).

    Article  CAS  Google Scholar 

  • Edwards, E. W., Montague, M. F., Solak, H. H., Hawker, C. J. & Nealey, P. F. Precise control over molecular dimensions of block-copolymer domains using the interfacial energy of chemically nanopatterned substrates. Adv. Mater. 16, 1315–1319 (2004).

    Article  CAS  Google Scholar 

  • Thompson, A. P. et al. LAMMPS—a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comp. Phys. Comm. 271, 108171 (2022).

    Article  CAS  Google Scholar 

  • Brown, W. M., Wang, P., Plimpton, S. J. & Tharrington, A. N. Implementing molecular dynamics on hybrid high performance computers—short range forces. Comput. Phys. Commun. 182, 898–911 (2011).

    Article  CAS  Google Scholar 

  • Hoogerbrugge, P. J. & Koelman, J. M. V. A. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys. Lett. 19, 155–160 (1992).

    Article  Google Scholar 

  • Time Stamp:

    More from Nature Nanotechnology