Three-dimensional operando optical imaging of particle and electrolyte heterogeneities inside Li-ion batteries - Nature Nanotechnology

Three-dimensional operando optical imaging of particle and electrolyte heterogeneities inside Li-ion batteries – Nature Nanotechnology

Source Node: 2839982
  • Fraggedakis, D. et al. A scaling law to determine phase morphologies during ion intercalation. Energy Environ. Sci. 13, 2142–2152 (2020).

    Article  Google Scholar 

  • Van Der Ven, A., Ceder, G., Asta, M. & Tepesch, P. D. First-principles theory of ionic diffusion with nondilute carriers. Phys. Rev. B 64, 184307 (2001).

    Article  Google Scholar 

  • Van Der Ven, A., Bhattacharya, J. & Belak, A. A. Understanding Li diffusion in Li-intercalation compounds. Acc. Chem. Res. 46, 1216–1225 (2013).

    Article  Google Scholar 

  • Pender, J. P. et al. Electrode degradation in lithium-ion batteries. ACS Nano 14, 1243–1295 (2020).

    Article  CAS  Google Scholar 

  • Daemi, S. R. et al. Visualizing the carbon binder phase of battery electrodes in three dimensions. ACS Appl. Energy Mater. 1, 3702–3710 (2018).

    Article  CAS  Google Scholar 

  • Park, J. et al. Fictitious phase separation in Li layered oxides driven by electro-autocatalysis. Nat. Mater. 20, 991–999 (2021).

    Article  CAS  Google Scholar 

  • Mistry, A., Heenan, T., Smith, K., Shearing, P. & Mukherjee, P. P. Asphericity can cause nonuniform lithium intercalation in battery active particles. ACS Energy Lett. 7, 1871–1879 (2022).

    Article  CAS  Google Scholar 

  • Finegan, D. P. et al. Spatial quantification of dynamic inter and intra particle crystallographic heterogeneities within lithium ion electrodes. Nat. Commun. 11, 631 (2020).

    Article  CAS  Google Scholar 

  • Jonkman, J., Brown, C. M., Wright, G. D., Anderson, K. I. & North, A. J. Tutorial: guidance for quantitative confocal microscopy. Nat. Protoc. 15, 1585–1611 (2020).

    Article  CAS  Google Scholar 

  • Qin, S., Isbaner, S., Gregor, I. & Enderlein, J. Doubling the resolution of a confocal spinning-disk microscope using image scanning microscopy. Nat. Protoc. 16, 164–181 (2020).

    Article  Google Scholar 

  • Merryweather, A. J., Schnedermann, C., Jacquet, Q., Grey, C. P. & Rao, A. Operando optical tracking of single-particle ion dynamics in batteries. Nature 594, 522–528 (2021).

    Article  CAS  Google Scholar 

  • Merryweather, A. J. et al. Operando monitoring of single-particle kinetic state-of-charge heterogeneities and cracking in high-rate Li-ion anodes. Nat. Mater. 21, 1306–1313 (2022).

    Article  CAS  Google Scholar 

  • Wu, W., Wang, M., Ma, J., Cao, Y. & Deng, Y. Electrochromic metal oxides: recent progress and prospect. Adv. Electron. Mater. 4, 1800185 (2018).

    Article  Google Scholar 

  • Gillaspie, D. T., Tenent, R. C. & Dillon, A. C. Metal-oxide films for electrochromic applications: present technology and future directions. J. Mater. Chem. 20, 9585–9592 (2010).

    Article  CAS  Google Scholar 

  • Jiang, D. et al. Optical imaging of phase transition and Li-ion diffusion kinetics of single LiCoO2 nanoparticles during electrochemical cycling. J. Am. Chem. Soc. 139, 186–199 (2017).

    Article  CAS  Google Scholar 

  • Joshi, Y. et al. Modulation of the optical properties of lithium manganese oxide via Li-ion de/intercalation. Adv. Opt. Mater. 6, 1701362 (2018).

    Article  Google Scholar 

  • Chen, Y. et al. Operando video microscopy of Li plating and re-intercalation on graphite anodes during fast charging. J. Mater. Chem. A 9, 23522–23536 (2021).

    Article  CAS  Google Scholar 

  • Sanchez, A. J., Kazyak, E., Chen, Y., Lasso, J. & Dasgupta, N. P. Lithium stripping: anisotropic evolution and faceting of pits revealed by operando 3-D microscopy. J. Mater. Chem. A 9, 21013–21023 (2021).

    Article  CAS  Google Scholar 

  • Xu, C. et al. Operando visualisation of kinetically-induced lithium heterogeneities in single-particle layered Ni-rich cathodes. Joule 6, 2535–2546 (2022).

    Article  CAS  Google Scholar 

  • Grenier, A. et al. Intrinsic kinetic limitations in substituted lithium-layered transition-metal oxide electrodes. J. Am. Chem. Soc. 142, 7001–7011 (2020).

    Article  CAS  Google Scholar 

  • Liu, H. L. et al. Electronic structure and lattice dynamics of LixCoO2 single crystals. New J. Phys. 17, 103004 (2015).

    Article  Google Scholar 

  • Beluze, L. et al. Infrared electroactive materials and devices. J. Phys. Chem. Solids 67, 1330–1333 (2006).

    Article  CAS  Google Scholar 

  • Kuzmenko, A. B. Kramers-Kronig constrained variational analysis of optical spectra. Rev. Sci. Instrum. 76, 083108 (2005).

    Article  Google Scholar 

  • Mahmoodabadi, R. G. et al. Point spread function in interferometric scattering microscopy (iSCAT). Part I: aberrations in defocusing and axial localization. Opt. Express 28, 25969–25988 (2020).

    Article  CAS  Google Scholar 

  • Jin, Y. et al. In operando plasmonic monitoring of electrochemical evolution of lithium metal. Proc. Natl Acad. Sci. USA 115, 11168–11173 (2018).

    Article  CAS  Google Scholar 

  • Kitta, M., Murai, K., Yoshii, K. & Sano, H. Electrochemical surface plasmon resonance spectroscopy for investigation of the initial process of lithium metal deposition. J. Am. Chem. Soc. 143, 11160–11170 (2021).

    Article  CAS  Google Scholar 

  • Muñoz-Castro, M. et al. Controlling the optical properties of sputtered-deposited LixV2O5 films. J. Appl. Phys. 120, 135106 (2016).

    Article  Google Scholar 

  • Feng, G. et al. Imaging solid-electrolyte-interphase dynamics using in-operando reflection interference microscopy. Nat. Nanotechnol. 18, 780–789 (2023).

  • Yang, X. et al. Reflection optical imaging to study oxygen evolution reactions. J. Electrochem. Soc. 169, 057507 (2022).

    Article  CAS  Google Scholar 

  • Contreras-Naranjo, J. C., Silas, J. A. & Ugaz, V. M. Reflection interference contrast microscopy of arbitrary convex surfaces. Appl. Opt. 49, 3701–3712 (2010).

    Article  Google Scholar 

  • Jow, T. R., Delp, S. A., Allen, J. L., Jones, J.-P. & Smart, M. C. Factors limiting Li + charge transfer kinetics in Li-ion batteries. J. Electrochem. Soc. 165, A361–A367 (2018).

    Article  CAS  Google Scholar 

  • Dahéron, L. et al. Electron transfer mechanisms upon lithium deintercalation from LiCoO2 to CoO2 investigated by XPS. Chem. Mater. 20, 583–590 (2008).

    Article  Google Scholar 

  • Cogswell, D. A. & Bazant, M. Z. Theory of coherent nucleation in phase-separating nanoparticles. Nano Lett. 13, 3036–3041 (2013).

    Article  CAS  Google Scholar 

  • Gent, W. E. et al. Persistent state-of-charge heterogeneity in relaxed, partially charged Li1−xNi1/3Co1/3Mn1/3O2 secondary particles. Adv. Mater. 28, 6631–6638 (2016).

    Article  CAS  Google Scholar 

  • Mu, L. et al. Propagation topography of redox phase transformations in heterogeneous layered oxide cathode materials. Nat. Commun. 9, 2810 (2018).

    Article  Google Scholar 

  • Laurence, S. & Hardwick, J. Kerr gated Raman spectroscopy of LiPF6 salt and LiPF6-based organic carbonate electrolyte for Li-ion batteries. Phys. Chem. Chem. Phys. 21, 23833 (2019).

    Article  Google Scholar 

  • Jarry, A. et al. The formation mechanism of fluorescent metal complexes at the LixNi0.5Mn1.5O4−δ/carbonate ester electrolyte interface. J. Am. Chem. Soc. 137, 3533–3539 (2015).

    Article  Google Scholar 

  • Yu, Y. et al. Coupled LiPF6 decomposition and carbonate dehydrogenation enhanced by highly covalent metal oxides in high-energy Li-ion batteries. J. Phys. Chem. C 122, 27368–27382 (2018).

    Article  CAS  Google Scholar 

  • Wang, A. A. et al. Potentiometric MRI of a superconcentrated lithium electrolyte: testing the irreversible thermodynamics approach. ACS Energy Lett. 6, 3086–3095 (2021).

    Article  CAS  Google Scholar 

  • Fawdon, J., Ihli, J., La Mantia, F. & Pasta, M. Characterising lithium-ion electrolytes via operando Raman microspectroscopy. Nat. Commun. 12, 4053 (2021).

    Article  CAS  Google Scholar 

  • Cheng, Q. et al. Operando and three-dimensional visualization of anion depletion and lithium growth by stimulated Raman scattering microscopy. Nat. Commun. 9, 2942 (2018).

    Article  Google Scholar 

  • Seo, D. M., Borodin, O., Han, S.-D., Boyle, P. D. & Henderson, W. A. Electrolyte solvation and ionic association II. Acetonitrile-lithium salt mixtures: highly dissociated salts. J. Electrochem. Soc. 159, A1489–A1500 (2012).

    Article  CAS  Google Scholar 

  • Brissot, C., Rosso, M., Chazalviel, J. ‐N. & Lascaud, S. In situ concentration cartography in the neighborhood of dendrites growing in lithium/polymer‐electrolyte/lithium cells. J. Electrochem. Soc. 146, 4393–4400 (1999).

    Article  CAS  Google Scholar 

  • Khan, Z. A., Agnaou, M., Sadeghi, M. A., Elkamel, A. & Gostick, J. T. Pore network modelling of galvanostatic discharge behaviour of lithium-ion battery cathodes. J. Electrochem. Soc. 168, 070534 (2021).

    Article  CAS  Google Scholar 

  • Kang, J., Koo, B., Kang, S. & Lee, H. Physicochemical nature of polarization components limiting the fast operation of Li-ion batteries. Chem. Phys. Rev. 2, 041307 (2021).

    Article  CAS  Google Scholar 

  • Takamatsu, D. et al. In operando visualization of electrolyte stratification dynamics in lead-acid battery using phase-contrast X-ray imaging. Chem. Commun. 56, 9553–9556 (2020).

    Article  CAS  Google Scholar 

  • Takamatsu, D., Yoneyama, A., Asari, Y. & Hirano, T. Quantitative visualization of salt concentration distributions in lithium-ion battery electrolytes during battery operation using X-ray phase imaging. J. Am. Chem. Soc. 140, 1608–1611 (2018).

    Article  CAS  Google Scholar 

  • Aurbach, D. et al. Raman spectroelectrochemistry of a lithium/polymer electrolyte symmetric cell. J. Electrochem. Soc. 145, 3034 (1998).

    Article  Google Scholar 

  • Klett, M. et al. Quantifying mass transport during polarization in a Li ion battery electrolyte by in situ 7Li NMR imaging. J. Am. Chem. Soc. 134, 14654–14657 (2012).

    Article  CAS  Google Scholar 

  • Zhao, J. et al. Bond-selective intensity diffraction tomography. Nat. Commun. 13, 7767 (2022).

    Article  CAS  Google Scholar 

  • Horstmeyer, R., Ruan, H. & Yang, C. Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue. Nat. Photon. 9, 563–571 (2015).

    Article  CAS  Google Scholar 

  • Gong, P. et al. Parametric imaging of attenuation by optical coherence tomography: review of models, methods, and clinical translation. J. Biomed. Opt. 25, 040901 (2020).

    Article  Google Scholar 

  • Ghosh, B., Mandal, M., Mitra, P. & Chatterjee, J. Attenuation corrected-optical coherence tomography for quantitative assessment of skin wound healing and scar morphology. J. Biophotonics 14, e202000357 (2020).

    Google Scholar 

  • Diel, E. E., Lichtman, J. W. & Richardson, D. S. Tutorial: avoiding and correcting sample-induced spherical aberration artifacts in 3D fluorescence microscopy. Nat. Protoc. 15, 2773–2784 (2020).

    Article  CAS  Google Scholar 

  • Pimenta, V. et al. Synthesis of Li-rich NMC: a comprehensive study. Chem. Mater. 29, 9923–9936 (2017).

    Article  CAS  Google Scholar 

  • Donaldson, S. H. & De Aguiar, H. B. Molecular imaging of cholesterol and lipid distributions in model membranes. J. Phys. Chem. Lett. 9, 1528–1533 (2018).

    Article  CAS  Google Scholar 

  • Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH image to ImageJ: 25 years of image analysis. Nat. Methods 97, 671–675 (2012).

    Article  Google Scholar 

  • Lowe, D. G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60, 91–110 (2004).

    Article  Google Scholar 

  • Time Stamp:

    More from Nature Nanotechnology