Spatially multiplexed single-molecule translocations through a nanopore at controlled speeds - Nature Nanotechnology

Spatially multiplexed single-molecule translocations through a nanopore at controlled speeds – Nature Nanotechnology

Source Node: 2734558
  • Branton, D. et al. The potential and challenges of nanopore sequencing. Nat. Biotechnol. 26, 1146–1153 (2008).

    Article  CAS  Google Scholar 

  • Schneider, G. F. & Dekker, C. DNA sequencing with nanopores. Nat. Biotechnol. 30, 326–328 (2012).

    Article  CAS  Google Scholar 

  • Brinkerhoff, H., Kang, A. S. W., Liu, J., Aksimentiev, A. & Dekker, C. Multiple rereads of single proteins at single-amino acid resolution using nanopores. Science 374, 1509–1513 (2021).

    Article  CAS  Google Scholar 

  • Manrao, E. A. et al. Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase. Nat. Biotechnol. 30, 349–353 (2012).

    Article  CAS  Google Scholar 

  • Derrington, I. M. et al. Subangstrom single-molecule measurements of motor proteins using a nanopore. Nat. Biotechnol. 33, 1073–1075 (2015).

    Article  CAS  Google Scholar 

  • Fragasso, A., Schmid, S. & Dekker, C. Comparing current noise in biological and solid-state nanopores. ACS Nano 14, 1338–1349 (2020).

    Article  CAS  Google Scholar 

  • Li, J. et al. Ion-beam sculpting at nanometre length scales. Nature 412, 166–169 (2001).

    Article  CAS  Google Scholar 

  • Storm, A., Chen, J., Ling, X., Zandbergen, H. & Dekker, C. Fabrication of solid-state nanopores with single-nanometre precision. Nat. Mater. 2, 537–540 (2003).

    Article  CAS  Google Scholar 

  • Dekker, C. Solid-state nanopores. Nanoscience and Technology: A Collection of Reviews from Nature Journals 60–66 (2010).

  • Garaj, S. et al. Graphene as a subnanometre trans-electrode membrane. Nature 467, 190–193 (2010).

    Article  CAS  Google Scholar 

  • Xue, L. et al. Solid-state nanopore sensors. Nat. Rev. Mater. 5, 931–951 (2020).

    Article  CAS  Google Scholar 

  • Yusko, E. C. et al. Real-time shape approximation and fingerprinting of single proteins using a nanopore. Nat. Nanotechnol. 12, 360–367 (2017).

    Article  CAS  Google Scholar 

  • Lu, B., Albertorio, F., Hoogerheide, D. P. & Golovchenko, J. A. Origins and consequences of velocity fluctuations during DNA passage through a nanopore. Biophys. J. 101, 70–79 (2011).

    Article  CAS  Google Scholar 

  • Plesa, C., Van Loo, N., Ketterer, P., Dietz, H. & Dekker, C. Velocity of DNA during translocation through a solid-state nanopore. Nano Lett. 15, 732–737 (2015).

    Article  CAS  Google Scholar 

  • Rosenstein, J. K., Wanunu, M., Merchant, C. A., Drndic, M. & Shepard, K. L. Integrated nanopore sensing platform with sub-microsecond temporal resolution. Nat. Methods 9, 487–492 (2012).

    Article  CAS  Google Scholar 

  • Steinbock, L. J., Otto, O., Chimerel, C., Gornall, J. & Keyser, U. F. Detecting DNA folding with nanocapillaries. Nano Lett. 10, 2493–2497 (2010).

    Article  CAS  Google Scholar 

  • Bell, N. A. W., Chen, K., Ghosal, S., Ricci, M. & Keyser, U. F. Asymmetric dynamics of DNA entering and exiting a strongly confining nanopore. Nat. Commun. 8, 380 (2017).

    Article  Google Scholar 

  • Steinbock, L. J., Bulushev, R. D., Krishnan, S., Raillon, C. & Radenovic, A. DNA translocation through low-noise glass nanopores. ACS Nano 7, 11255–11262 (2013).

    Article  CAS  Google Scholar 

  • Aramesh, M. et al. Localized detection of ions and biomolecules with a force-controlled scanning nanopore microscope. Nat. Nanotechnol. 14, 791–798 (2019).

    Article  CAS  Google Scholar 

  • Yuan, Z., Liu, Y., Dai, M., Yi, X. & Wang, C. Controlling DNA translocation through solid-state nanopores. Nanoscale Res. Lett. 15, 80 (2020).

    Article  CAS  Google Scholar 

  • Rahman, M., Sampad, M. J. N., Hawkins, A. & Schmidt, H. Recent advances in integrated solid-state nanopore sensors. Lab Chip 21, 3030–3052 (2021).

    Article  CAS  Google Scholar 

  • Hansma, P. K., Drake, B., Marti, O., Gould, S. A. & Prater, C. B. The scanning ion-conductance microscope. Science 243, 641–643 (1989).

    Article  CAS  Google Scholar 

  • Korchev, Y. E., Bashford, C. L., Milovanovic, M., Vodyanoy, I. & Lab, M. J. Scanning ion conductance microscopy of living cells. Biophys. J. 73, 653–658 (1997).

    Article  CAS  Google Scholar 

  • Novak, P. et al. Nanoscale live-cell imaging using hopping probe ion conductance microscopy. Nat. Methods 6, 279–281 (2009).

    Article  CAS  Google Scholar 

  • Leitao, S. M. et al. Time-resolved scanning ion conductance microscopy for three-dimensional tracking of nanoscale cell surface dynamics. ACS Nano 15, 17613–17622 (2021).

    Article  CAS  Google Scholar 

  • Navikas, V. et al. High-throughput nanocapillary filling enabled by microwave radiation for scanning ion conductance microscopy imaging. ACS Appl. Nano Mater. 3, 7829–7834 (2020).

    Article  CAS  Google Scholar 

  • Rief, M., Oesterhelt, F., Heymann, B. & Gaub, H. E. Single molecule force spectroscopy on polysaccharides by atomic force microscopy. Science 275, 1295–1297 (1997).

    Article  CAS  Google Scholar 

  • Chen, K. et al. Dynamics of driven polymer transport through a nanopore. Nat. Phys. 17, 1043–1049 (2021).

    Article  CAS  Google Scholar 

  • Chen, K. et al. Digital data storage using DNA nanostructures and solid-state nanopores. Nano Lett. 19, 1210–1215 (2018).

    Article  Google Scholar 

  • Tabatabaei, S. K. et al. DNA punch cards for storing data on native DNA sequences via enzymatic nicking. Nat. Commun. 11, 1742 (2020).

    Article  CAS  Google Scholar 

  • Clegg, R. M. Fluorescence resonance energy transfer and nucleic acids. Methods Enzymol. 211, 353–388 (1992).

    Article  CAS  Google Scholar 

  • Lelek, M. et al. Single-molecule localization microscopy. Nat. Rev. Methods Primers 1, 39 (2021).

    Article  CAS  Google Scholar 

  • Jungmann, R. et al. Single-molecule kinetics and super-resolution microscopy by fluorescence imaging of transient binding on DNA origami. Nano Lett. 10, 4756–4761 (2010).

    Article  CAS  Google Scholar 

  • Zhu, C. et al. Imaging with ion channels. Anal. Chem. 93, 5355–5359 (2021).

    Article  CAS  Google Scholar 

  • Radmacher, M., Cleveland, J. P., Fritz, M., Hansma, H. G. & Hansma, P. K. Mapping interaction forces with the atomic force microscope. Biophys. J. 66, 2159–2165 (1994).

    Article  CAS  Google Scholar 

  • Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article  CAS  Google Scholar 

  • Nečas, D. & Klapetek, P. Gwyddion: an open-source software for SPM data analysis. Open Phys. 10, 181–188 (2012).

    Article  Google Scholar 

  • Wang, H. & Hays, J. B. Simple and rapid preparation of gapped plasmid DNA for incorporation of oligomers containing specific DNA lesions. Mol. Biotechnol. 19, 133–140 (2001).

    Article  CAS  Google Scholar 

  • Jozwiakowski, S. K. & Connolly, B. A. Plasmid-based lacZα assay for DNA polymerase fidelity: application to archaeal family-B DNA polymerase. Nucleic Acids Res. 37, e102 (2009).

    Article  Google Scholar 

  • Auburn, R. P. et al. Robotic spotting of cDNA and oligonucleotide microarrays. Trends Biotechnol. 23, 374–379 (2005).

    Article  CAS  Google Scholar 

  • Navikas, V. et al. Correlative 3D microscopy of single cells using super-resolution and scanning ion-conductance microscopy. Nat. Commun. 12, 4565 (2021).

    Article  CAS  Google Scholar 

  • Time Stamp:

    More from Nature Nanotechnology