Oligomer nanoparticle release from polylactic acid plastics catalysed by gut enzymes triggers acute inflammation

Oligomer nanoparticle release from polylactic acid plastics catalysed by gut enzymes triggers acute inflammation

Source Node: 1987320
  • Hurley, R., Woodward, J. & Rothwell, J. J. Microplastic contamination of river beds significantly reduced by catchment-wide flooding. Nat. Geosci. 11, 251–257 (2018).

    Article  CAS  Google Scholar 

  • Galloway, T. S., Cole, M. & Lewis, C. Interactions of microplastic debris throughout the marine ecosystem. Nat. Ecol. Evol. 1, 0116 (2017).

    Article  Google Scholar 

  • Koelmans, A. A. et al. Risk assessment of microplastic particles. Nat. Rev. Mater. 7, 138–152 (2022).

    Article  Google Scholar 

  • Li, D. et al. Microplastic release from the degradation of polypropylene feeding bottles during infant formula preparation. Nat. Food 1, 746–754 (2020).

    Article  CAS  Google Scholar 

  • Senathirajah, K. et al. Estimation of the mass of microplastics ingested—a pivotal first step towards human health risk assessment. J. Hazard. Mater. 404, 124004 (2021).

    Article  CAS  Google Scholar 

  • Schwabl, P. et al. Detection of various microplastics in human stool: a prospective case series. Ann. Intern. Med. 171, 453–457 (2019).

    Article  Google Scholar 

  • Deng, Y. et al. Polystyrene microplastics affect the reproductive performance of male mice and lipid homeostasis in their offspring. Environ. Sci. Technol. Lett. 9, 752–757 (2022).

    Article  CAS  Google Scholar 

  • Sussarellu, R. et al. Oyster reproduction is affected by exposure to polystyrene microplastics. Proc. Natl Acad. Sci. USA 113, 2430–2435 (2016).

    Article  CAS  Google Scholar 

  • Choi, J. S., Kim, K., Hong, S. H., Park, K.-I. & Park, J.-W. Impact of polyethylene terephthalate microfiber length on cellular responses in the Mediterranean mussel Mytilus galloprovincialis. Mar. Environ. Res. 168, 105320 (2021).

    Article  CAS  Google Scholar 

  • Jin, H. et al. Evaluation of neurotoxicity in BALB/c mice following chronic exposure to polystyrene microplastics. Environ. Health Perspect. 130, 107002 (2022).

    Article  Google Scholar 

  • Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017).

    Article  Google Scholar 

  • Aznar, M., Ubeda, S., Dreolin, N. & Nerin, C. Determination of non-volatile components of a biodegradable food packaging material based on polyester and polylactic acid (PLA) and its migration to food simulants. J. Chromatogr. A 1583, 1–8 (2019).

    Article  CAS  Google Scholar 

  • Ncube, L. K., Ude, A. U., Ogunmuyiwa, E. N., Zulkifli, R. & Beas, I. N. Environmental impact of food packaging materials: a review of contemporary development from conventional plastics to polylactic acid based materials. Materials 13, 4994 (2020).

    Article  CAS  Google Scholar 

  • Balla, E. et al. Poly (lactic acid): a versatile biobased polymer for the future with multifunctional properties—from monomer synthesis, polymerization techniques and molecular weight increase to PLA applications. Polymers 13, 1822 (2021).

    Article  CAS  Google Scholar 

  • Ramot, Y., Haim-Zada, M., Domb, A. J. & Nyska, A. Biocompatibility and safety of PLA and its copolymers. Adv. Drug Deliv. Rev. 107, 153–162 (2016).

    Article  CAS  Google Scholar 

  • Zhang, X. et al. Photolytic degradation elevated the toxicity of polylactic acid microplastics to developing zebrafish by triggering mitochondrial dysfunction and apoptosis. J. Hazard. Mater. 413, 125321 (2021).

    Article  CAS  Google Scholar 

  • Duan, Z. et al. Diet preference of zebrafish (Danio rerio) for bio-based polylactic acid microplastics and induced intestinal damage and microbiota dysbiosis. J. Hazard. Mater. 429, 128332 (2022).

    Article  CAS  Google Scholar 

  • Wang, L. et al. An in situ depolymerization and liquid chromatography–tandem mass spectrometry method for quantifying polylactic acid microplastics in environmental samples. Environ. Sci. Technol. 56, 13029–13035 (2022).

    Article  CAS  Google Scholar 

  • Yan, M., Yang, J., Sun, H., Liu, C. & Wang, L. Occurrence and distribution of microplastics in sediments of a man-made lake receiving reclaimed water. Sci. Total Environ. 813, 152430 (2022).

    Article  CAS  Google Scholar 

  • Wei, X. F. et al. Millions of microplastics released from a biodegradable polymer during biodegradation/enzymatic hydrolysis. Water Res. 211, 118068 (2022).

    Article  CAS  Google Scholar 

  • González-Pleiter, M. et al. Secondary nanoplastics released from a biodegradable microplastic severely impact freshwater environments. Environ. Sci. Nano 6, 1382–1392 (2019).

    Article  Google Scholar 

  • Lambert, S. & Wagner, M. Characterisation of nanoplastics during the degradation of polystyrene. Chemosphere 145, 265–268 (2016).

    Article  CAS  Google Scholar 

  • Lambert, S. & Wagner, M. Formation of microscopic particles during the degradation of different polymers. Chemosphere 161, 510–517 (2016).

    Article  CAS  Google Scholar 

  • Mattsson, K., Björkroth, F., Karlsson, T. & Hassellöv, M. Nanofragmentation of expanded polystyrene under simulated environmental weathering (thermooxidative degradation and hydrodynamic turbulence). Front. Mar. Sci. 7, 578178 (2021).

    Article  Google Scholar 

  • Sorasan, C. et al. Generation of nanoplastics during the photoageing of low-density polyethylene. Environ. Pollut. 289, 117919 (2021).

    Article  CAS  Google Scholar 

  • Su, Y. et al. Steam disinfection releases micro (nano) plastics from silicone-rubber baby teats as examined by optical photothermal infrared microspectroscopy. Nat. Nanotechnol. 17, 76–85 (2022).

    Article  CAS  Google Scholar 

  • Wright, S. L. & Kelly, F. J. Plastic and human health: a micro issue? Environ. Sci. Technol. 51, 6634–6647 (2017).

    Article  CAS  Google Scholar 

  • Gruber, M. M. et al. Plasma proteins facilitates placental transfer of polystyrene particles. J. Nanobiotechnol. 18, 128 (2020).

    Article  CAS  Google Scholar 

  • Wang, H. F., Hu, Y., Sun, W. Q. & Xie, C. S. Polylactic acid nanoparticles across the brain-blood barrier observed with analytical electron microscopy. Chin. J. Biotechnol. 20, 790–794 (2004).

    CAS  Google Scholar 

  • Dawson, A. L. et al. Turning microplastics into nanoplastics through digestive fragmentation by Antarctic krill. Nat. Commun. 9, 1001 (2018).

    Article  Google Scholar 

  • Ubeda, S., Aznar, M., Alfaro, P. & Nerin, C. Migration of oligomers from a food-contact biopolymer based on polylactic acid (PLA) and polyester. Anal. Bioanal. Chem. 411, 3521–3532 (2019).

    Article  CAS  Google Scholar 

  • Fan, P., Yu, H., Xi, B. & Tan, W. A review on the occurrence and influence of biodegradable microplastics in soil ecosystems: are biodegradable plastics substitute or threat? Environ. Int. 163, 107244 (2022).

    Article  Google Scholar 

  • Manavitehrani, I., Fathi, A., Wang, Y., Maitz, P. K. & Dehghani, F. Reinforced poly(propylene carbonate) composite with enhanced and tunable characteristics, an alternative for poly(lactic acid). ACS Appl. Mater. Interfaces 7, 22421–22430 (2015).

    Article  CAS  Google Scholar 

  • Navarro, S. M. et al. Biodistribution and toxicity of orally administered poly (lactic-co-glycolic) acid nanoparticles to F344 rats for 21 days. Nanomedicine 11, 1653–1669 (2016).

    Article  CAS  Google Scholar 

  • Bellac, C. L., Dufour, A., Krisinger, M. J., Loonchanta, A. & Starr, A. E. Macrophage matrix metalloproteinase-12 dampens inflammation and neutrophil influx in arthritis. Cell Rep. 9, 618–632 (2014).

    Article  CAS  Google Scholar 

  • Zangmeister, C. D., Radney, J. G., Benkstein, K. D. & Kalanyan, B. Common single-use consumer plastic products release trillions of sub-100 nm nanoparticles per liter into water during normal use. Environ. Sci. Technol. 56, 5448–5455 (2022).

    Article  CAS  Google Scholar 

  • Hernandez, L. M. et al. Plastic teabags release billions of microparticles and nanoparticles into tea. Environ. Sci. Technol. 53, 12300–12310 (2019).

    Article  CAS  Google Scholar 

  • Tilston, E. L., Gibson, G. R. & Collins, C. D. Colon extended physiologically based extraction test (CE-PBET) increases bioaccessibility of soil-bound PAH. Environ. Sci. Technol. 45, 5301–5308 (2011).

    Article  CAS  Google Scholar 

  • Macfarlane, G. T., Macfarlane, S. & Gibson, G. Validation of a three-stage compound continuous culture system for investigating the effect of retention time on the ecology and metabolism of bacteria in the human colon. Microb. Ecol. 35, 180–187 (1998).

    Article  CAS  Google Scholar 

  • Capolino, P. et al. In vitro gastrointestinal lipolysis: replacement of human digestive lipases by a combination of rabbit gastric and porcine pancreatic extracts. Food Dig. 2, 43–51 (2011).

    Article  CAS  Google Scholar 

  • Time Stamp:

    More from Nature Nanotechnology