Low-thermal-budget synthesis of monolayer molybdenum disulfide for silicon back-end-of-line integration on a 200 mm platform

Low-thermal-budget synthesis of monolayer molybdenum disulfide for silicon back-end-of-line integration on a 200 mm platform

Source Node: 2612935
  • Khan, H. N. et al. Science and research policy at the end of Moore’s law. Nat. Electron. 1, 14–21 (2018).

    Article  Google Scholar 

  • Li, M.-Y. et al. How 2D semiconductors could extend Moore’s law. Nature 567, 169–170 (2019).

    Article  CAS  Google Scholar 

  • Hills, G. et al. Modern microprocessor built from complementary carbon nanotube transistors. Nature 572, 595–602 (2019).

    Article  CAS  Google Scholar 

  • Wang, H. et al. Integrated circuits based on bilayer MoS2 transistors. Nano Lett. 12, 4674–4680 (2012).

    Article  CAS  Google Scholar 

  • Si, M. et al. Scaled indium oxide transistors fabricated using atomic layer deposition. Nat. Electron. 5, 164–170 (2022).

    Article  CAS  Google Scholar 

  • Manzeli, S. et al. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2, 17033 (2017).

    Article  CAS  Google Scholar 

  • Lemme, M. C. et al. 2D material for future heterogeneous electronics. Nat. Commun. 13, 1392 (2022).

    Article  CAS  Google Scholar 

  • Zhang, X. et al. Two-dimensional MoS2-enabled flexible rectenna for Wi-Fi-band wireless energy harvesting. Nature 566, 368–372 (2019).

    Article  Google Scholar 

  • Xue, M. et al. Integrated biosensor platform based on graphene transistor arrays for real-time high-accuracy ion sensing. Nat. Commun. 13, 5064 (2022).

    Article  CAS  Google Scholar 

  • Li, T. et al. Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol. 16, 1201–1207 (2021).

    Article  CAS  Google Scholar 

  • Kang, K. et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520, 656–660 (2015).

    Article  CAS  Google Scholar 

  • Yang, P. et al. Batch production of 6-inch uniform monolayer molybdenum disulfide catalyzed by sodium in glass. Nat. Commun. 9, 979 (2018).

    Article  Google Scholar 

  • Asselberghs, I. et al. Wafer-scale integration of double gated WS2-transistors in 300 mm Si CMOS fab. In Proc. 2020 IEEE International Electron Devices Meeting (IEDM) 40.2.1–40.2.4 (IEEE, 2020); https://doi.org/10.1109/IEDM13553.2020.9371926

  • O’Brien, K. P. et al. Advancing 2D monolayer CMOS through contact, channel and interface engineering. In Proc. 2021 IEEE International Electron Devices Meeting (IEDM) 7.1.1–7.1.4 (IEEE, 2021); https://doi.org/10.1109/IEDM19574.2021.9720651

  • Meng, W. et al. Three-dimensional monolithic micro-LED display driven by atomically thin transistor matrix. Nat. Nanotechnol. 16, 1231–1236 (2021).

    Article  CAS  Google Scholar 

  • Hwangbo, S. et al. Wafer-scale monolithic integration of full-colour micro-LED display using MoS2 transistor. Nat. Nanotechnol. 17, 500–506 (2022).

    Article  CAS  Google Scholar 

  • Koike, J., Hosseini, M., Hai, H. T., Ando, D. & Sutou, Y. Material innovation for MOL, BEOL, and 3D integration. In Proc. 2017 IEEE International Electron Devices Meeting (IEDM) 32.3.1–32.3.4 (IEEE, 2017); https://doi.org/10.1109/IEDM.2017.8268485

  • Zhang, W. et al. High-gain phototransistors based on a CVD MoS2 monolayer. Adv. Mater. 25, 3456–3461 (2013).

    Article  CAS  Google Scholar 

  • Yim, C. et al. High-performance hybrid electronic devices from layered PtSe2 films grown at low Temperature. ACS Nano 10, 9550–9558 (2016).

    Article  CAS  Google Scholar 

  • Park, J.-H. et al. Synthesis of high-performance monolayer molybdenum disulfide at low temperature. Small Methods 5, 2000720 (2021).

    Article  CAS  Google Scholar 

  • Mun, J. et al. High-mobility MoS2 directly grown on polymer substrate with kinetics-controlled metal–organic chemical vapor deposition. ACS Appl. Electron. Mater. 1, 608–616 (2019).

    Article  CAS  Google Scholar 

  • Schaefer, C. M. et al. Carbon Incorporation in MOCVD of MoS2 thin films grown from an organosulfide precursor. Chem. Mater. 33, 4474–4487 (2021).

    Article  CAS  Google Scholar 

  • Cole-Hamilton, D. J. & Williams, J. O. (eds) Mechanisms of Reactions of Organometallic Compounds with Surfaces (Plenum, 2014).

  • Nam, H. & Shin, C. Impact of current flow shape in tapered (versus rectangular) FinFET on threshold voltage variation induced by work-function variation. IEEE Trans. Electron. Devices 61, 2007–2011 (2014).

    Article  CAS  Google Scholar 

  • Zhang, C. et al. An accurate method to extract and separate interface and gate oxide traps by the MOSFET subthreshold current. In Technical Proc. 2011 NSTI Nanotechnology Conference and Expo Vol. 2 (eds Laudon, M. & Romanowicz, B.) 180–183 (Nano Science and Technology Institute, CRC, 2011).

  • Cheng, Z. et al. How to report and benchmark emerging field-effect transistors. Nat. Electron. 5, 416–423 (2022).

    Article  Google Scholar 

  • Bao, W. et al. High mobility ambipolar MoS2 field-effect transistors: substrate and dielectric effects. Appl. Phys. Lett. 102, 042104 (2013).

    Article  Google Scholar 

  • Illarionov, Y. Y. U. et al. Insulators for 2D nanoelectronics: the gap to bridge. Nat. Commun. 11, 3385 (2020).

    Article  CAS  Google Scholar 

  • Ma, N. & Jena, D. Charge scattering and mobility in atomically thin semiconductors. Phys. Rev. X 4, 011043 (2014).

    CAS  Google Scholar 

  • Yu, Z. et al. Realization of room-temperature phonon-limited carrier transport in monolayer MoS2 by dielectric and carrier screening. Adv. Mater. 28, 547–552 (2016).

    Article  CAS  Google Scholar 

  • Liu, X. et al. A modified wrinkle-free MoS2 film transfer method for large area high mobility field-effect transistor. Nanotechnology 24, 055707 (2020).

    Article  Google Scholar 

  • Li, N. et al. Large-scale flexible and transparent electronics based on monolayer molybdenum disulfide field-effect transistors. Nat. Electron. 3, 177–717 (2020).

    Article  Google Scholar 

  • Sebastian, A. et al. Benchmarking monolayer MoS2 and WS2 field-effect transistors. Nat. Commun. 12, 693 (2021).

    Article  CAS  Google Scholar 

  • Seol, M. et al. High-throughput growth of wafer-scale monolayer transition metal dichalcogenide via vertical Ostwald ripening. Adv. Mater. 32, 2003542 (2020).

    Article  CAS  Google Scholar 

  • Kim, T. et al. Wafer-scale production of highly uniform two-dimensional MoS2 by metal–organic chemical vapor deposition. Nanotechnology 28, 18LT01 (2017).

    Article  Google Scholar 

  • Roy, A., Grossmann, P. J., Vitale, S. A. & Calhoun, B. H. A 1.3 µW, 5 pJ/cycle sub-threshold MSP430 processor in 90 nm xLP FDSOI for energy-efficient IoT applications. In Proc. 2016 17th International Symposium on Quality Electronic Design (ISQED) 158–162 (IEEE, 2016); https://doi.org/10.1109/ISQED.2016.7479193

  • Weller, H. G. et al. A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 12, 620–631 (1998).

    Article  Google Scholar 

  • Peng, D.-Y. & Robinson, D. B. A new two-constant equation of state. Ind. Eng. Chem. Fundam. 15, 59–64 (1976).

    Article  CAS  Google Scholar 

  • Tkaczuk, J. et al. Equations of state for the thermodynamic properties of binary mixtures for helium-4, neon, and argon. J. Phys. Chem. Ref. Data 49, 023101 (2020).

    Article  CAS  Google Scholar 

  • Tegeler, C. et al. A new equation of state for argon covering the fluid region for temperatures from the melting line to 700 K at pressures up to 1000 MPa. J. Phys. Chem. Ref. Data 28, 779–850 (1999).

    Article  CAS  Google Scholar 

  • Lemmon, E. W. & Jacobsen, R. T. Viscosity and thermal conductivity equations for nitrogen, oxygen, argon, and air. Int. J. Thermophys. 25, 21–69 (2004).

    Article  CAS  Google Scholar 

  • Darwish, M. & Moukalled, F. The Finite Volume Method in Computational Fluid Dynamics: An Advanced Introduction with OpenFOAM® and Matlab® (Springer, 2021).

  • Time Stamp:

    More from Nature Nanotechnology