Augmenting insect olfaction performance through nano-neuromodulation - Nature Nanotechnology

Augmenting insect olfaction performance through nano-neuromodulation – Nature Nanotechnology

Source Node: 3085672
  • Peng, G. et al. Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nat. Nanotechnol. 4, 669–673 (2009).

    Article  CAS  Google Scholar 

  • Strauch, M. et al. More than apples and oranges—detecting cancer with a fruit fly’s antenna. Sci. Rep. 4, 3576 (2014).

    Article  CAS  Google Scholar 

  • Raman, B., Meier, D. C., Evju, J. K. & Semancik, S. Designing and optimizing microsensor arrays for recognizing chemical hazards in complex environments. Sens. Actuators B 137, 617–629 (2009).

    Article  CAS  Google Scholar 

  • Dunn, M. & Degenhardt, L. The use of drug detection dogs in Sydney, Australia. Drug Alcohol Rev. 28, 658–662 (2009).

    Article  Google Scholar 

  • Nagle, H. T., Gutierrez-Osuna, R., Kermani, B. G. & Schiffman, S. S. in Handbook of Machine Olfaction: Electronic Nose Technology (eds Pearce, T. et al.) chap. 17, 419–444 (Wiley Online Library, 2002).

  • Brattoli, M. et al. Odour detection methods: olfactometry and chemical sensors. Sensors (Basel) 11, 5290–5322 (2011).

    Article  CAS  Google Scholar 

  • Terutsuki, D. et al. Real-time odor concentration and direction recognition for efficient odor source localization using a small bio-hybrid drone. Sens. Actuators B 339, 129770 (2021).

    Article  CAS  Google Scholar 

  • Saha, D. et al. Explosive sensing with insect-based biorobots. Biosens. Bioelectron. X 6, 100050 (2020).

    CAS  Google Scholar 

  • Ma, S., Li, B. & Li, Y. The steering jump control of a locust bio-robot via asynchronous hindleg kickings. Adv. Intell. Syst. 4, 2200082 (2022).

    Article  Google Scholar 

  • Le, D. L. et al. Neurotransmitter-loaded nanocapsule triggers on-demand muscle relaxation in living organism. ACS Appl. Mater. Interfaces 10, 37812–37819 (2018).

    Article  CAS  Google Scholar 

  • Lorig, T. S. On the similarity of odor and language perception. Neurosci. Biobehav. Rev. 23, 391–398 (1999).

    Article  CAS  Google Scholar 

  • Saha, D. et al. A spatiotemporal coding mechanism for background-invariant odor recognition. Nat. Neurosci. 16, 1830–1839 (2013).

    Article  CAS  Google Scholar 

  • Saha, D. et al. Engaging and disengaging recurrent inhibition coincides with sensing and unsensing of a sensory stimulus. Nat. Commun. 8, 15413 (2017).

    Article  CAS  Google Scholar 

  • Lizbinski, K. M. & Dacks, A. M. Intrinsic and extrinsic neuromodulation of olfactory processing. Front. Cell. Neurosci. 11, 424 (2018).

    Article  Google Scholar 

  • Wang, Y. & Guo, L. Nanomaterial-enabled neural stimulation. Front. Neurosci. 10, 69 (2016).

    Article  Google Scholar 

  • Acarón Ledesma, H. et al. An atlas of nano-enabled neural interfaces. Nat. Nanotechnol. 14, 645–657 (2019).

    Article  Google Scholar 

  • Benfenati, F. & Lanzani, G. Clinical translation of nanoparticles for neural stimulation. Nat. Rev. Mater. 6, 1–4 (2021).

    Article  Google Scholar 

  • Zhang, Y. et al. Transcranial nongenetic neuromodulation via bioinspired vesicle-enabled precise NIR-II optical stimulation. Adv. Mater. https://doi.org/10.1002/adma.202208601 (2022).

  • Garcia-Etxarri, A. & Yuste, R. Time for nanoneuro. Nat. Methods 18, 1287–1293 (2021).

    Article  CAS  Google Scholar 

  • Yoo, S., Park, J.-H. & Nam, Y. Single-cell photothermal neuromodulation for functional mapping of neural networks. ACS Nano 13, 544–551 (2018).

    Article  Google Scholar 

  • Rastogi, S. K. et al. Remote nongenetic optical modulation of neuronal activity using fuzzy graphene. Proc. Natl Acad. Sci. USA 117, 13339 (2020).

    Article  CAS  Google Scholar 

  • Yoo, S., Hong, S., Choi, Y., Park, J.-H. & Nam, Y. Photothermal inhibition of neural activity with near-infrared-sensitive nanotransducers. ACS Nano 8, 8040–8049 (2014).

    Article  CAS  Google Scholar 

  • Carvalho-de-Souza, J. L. et al. Photosensitivity of neurons enabled by cell-targeted gold nanoparticles. Neuron 86, 207–217 (2015).

    Article  CAS  Google Scholar 

  • Kang, H., Lee, G.-H., Jung, H., Lee, J. W. & Nam, Y. Inkjet-printed biofunctional thermo-plasmonic interfaces for patterned neuromodulation. ACS Nano 12, 1128–1138 (2018).

    Article  CAS  Google Scholar 

  • Lee, J. W., Jung, H., Cho, H. H., Lee, J. H. & Nam, Y. Gold nanostar-mediated neural activity control using plasmonic photothermal effects. Biomaterials 153, 59–69 (2018).

    Article  CAS  Google Scholar 

  • Eom, K. et al. Enhanced infrared neural stimulation using localized surface plasmon resonance of gold nanorods. Small 10, 3853–3857 (2014).

    Article  CAS  Google Scholar 

  • Yoo, S., Kim, R., Park, J.-H. & Nam, Y. Electro-optical neural platform integrated with nanoplasmonic inhibition interface. ACS Nano 10, 4274–4281 (2016).

    Article  CAS  Google Scholar 

  • Gholami Derami, H. et al. Reversible photothermal modulation of electrical activity of excitable cells using polydopamine nanoparticles. Adv. Mater. 33, 2008809 (2021).

    Article  CAS  Google Scholar 

  • Tan, Q. et al. Inorganic nano-drug delivery systems for crossing the blood–brain barrier: advances and challenges. Coord. Chem. Rev. 494, 215344 (2023).

    Article  CAS  Google Scholar 

  • Sebesta, C. et al. Subsecond multichannel magnetic control of select neural circuits in freely moving flies. Nat. Mater. 21, 951–958 (2022).

    Article  CAS  Google Scholar 

  • Hescham, S.-A. et al. Magnetothermal nanoparticle technology alleviates parkinsonian-like symptoms in mice. Nat. Commun. 12, 5569 (2021).

    Article  CAS  Google Scholar 

  • Zhang, Y. et al. Transcranial nongenetic neuromodulation via bioinspired vesicle-enabled precise NIR-II optical stimulation. Adv. Mater. 35, 2208601 (2023).

    Article  CAS  Google Scholar 

  • Sou, K., Le, D. L. & Sato, H. Nanocapsules for programmed neurotransmitter release: toward artificial extracellular synaptic vesicles. Small 15, 1900132 (2019).

    Article  Google Scholar 

  • Roeder, T., Seifert, M., Kähler, C. & Gewecke, M. Tyramine and octopamine: antagonistic modulators of behavior and metabolism. Arch. Insect Biochem. Physiol. 54, 1–13 (2003).

    Article  CAS  Google Scholar 

  • Taylor, P. & Radic, Z. The cholinesterases: from genes to proteins. Annu. Rev. Pharmacol. Toxicol. 34, 281–320 (1994).

    Article  CAS  Google Scholar 

  • Manzano, M. & Vallet-Regí, M. Mesoporous silica nanoparticles for drug delivery. Adv. Funct. Mater. 30, 1902634 (2020).

    Article  CAS  Google Scholar 

  • Mitchell, M. J. et al. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 20, 101–124 (2021).

    Article  CAS  Google Scholar 

  • Ai, K., Liu, Y., Ruan, C., Lu, L. & Lu, G. Sp2 C‐dominant N‐doped carbon sub‐micrometer spheres with a tunable size: a versatile platform for highly efficient oxygen‐reduction catalysts. Adv. Mater. 25, 998–1003 (2013).

    Article  CAS  Google Scholar 

  • Wang, C., Ma, Z., Wang, T. & Su, Z. Synthesis, assembly, and biofunctionalization of silica‐coated gold nanorods for colorimetric biosensing. Adv. Funct. Mater. 16, 1673–1678 (2006).

    Article  CAS  Google Scholar 

  • Chen, X. et al. Alkalinity triggered the degradation of polydopamine nanoparticles. Polym. Bull. 78, 4439–4452 (2021).

    Article  CAS  Google Scholar 

  • Dante, S. et al. Selective targeting of neurons with inorganic nanoparticles: revealing the crucial role of nanoparticle surface charge. ACS Nano 11, 6630–6640 (2017).

    Article  CAS  Google Scholar 

  • Patel, M., Rangan, A. V. & Cai, D. A large-scale model of the locust antennal lobe. J. Comput. Neurosci. 27, 553–567 (2009).

    Article  Google Scholar 

  • Saha, D., Leong, K., Katta, N. & Raman, B. Multi-unit recording methods to characterize neural activity in the locust (Schistocerca americana) olfactory circuits. J. Visualized Exp. 71, e50139 (2013).

    Google Scholar 

  • Rein, J., Mustard, J. A., Strauch, M., Smith, B. H. & Galizia, C. G. Octopamine modulates activity of neural networks in the honey bee antennal lobe. J. Comp. Physiol. A 199, 947–962 (2013).

    Article  CAS  Google Scholar 

  • Roeder, T. Octopamine in invertebrates. Prog. Neurobiol. 59, 533–561 (1999).

    Article  CAS  Google Scholar 

  • Hammer, M. & Menzel, R. Multiple sites of associative odor learning as revealed by local brain microinjections of octopamine in honeybees. Learn. Mem. 5, 146–156 (1998).

    Article  CAS  Google Scholar 

  • Bazhenov, M. et al. Model of cellular and network mechanisms for odor-evoked temporal patterning in the locust antennal lobe. Neuron 30, 569–581 (2001).

    Article  CAS  Google Scholar 

  • Francia, S. et al. Light-induced charge generation in polymeric nanoparticles restores vision in advanced-stage retinitis pigmentosa rats. Nat. Commun. 13, 3677 (2022).

    Article  CAS  Google Scholar 

  • Moon, G. D. et al. A new theranostic system based on gold nanocages and phase-change materials with unique features for photoacoustic imaging and controlled release. J. Am. Chem. Soc. 133, 4762–4765 (2011).

    Article  CAS  Google Scholar 

  • Brown, S. L., Joseph, J. & Stopfer, M. Encoding a temporally structured stimulus with a temporally structured neural representation. Nat. Neurosci. 8, 1568–1576 (2005).

    Article  CAS  Google Scholar 

  • Pouzat, C., Mazor, O. & Laurent, G. Using noise signature to optimize spike-sorting and to assess neuronal classification quality. J. Neurosci. Methods 122, 43–57 (2002).

    Article  Google Scholar 

  • Time Stamp:

    More from Nature Nanotechnology