In-memory factorization of holographic perceptual representations

In-memory factorization of holographic perceptual representations

Source Node: 2557275
  • Feldman, J. The neural binding problem(s). Cogn. Neurodyn. 7, 1–11 (2013).

    Article  Google Scholar 

  • Land, E. H. & McCann, J. J. Lightness and retinex theory. J. Opt. Soc. Am. 61, 1–11 (1971).

    Article  CAS  Google Scholar 

  • Barrow, H. G. & Tenenbaum, J. M. in Computer Vision Systems 3–26 (Academic Press, 1978).

  • Adelson, E. & Pentland, A. in The Perception of Shading and Reflectance 409–424 (Cambridge Univ. Press, 1996).

  • Barron, J. T. & Malik, J. Shape, illumination and reflectance from shading. IEEE Trans. Pattern Anal. Mach. Intell. 37, 1670–1687 (2015).

    Article  Google Scholar 

  • Memisevic, R. & Hinton, G. E. Learning to represent spatial transformations with factored higher-order Boltzmann machines. Neural Comput. 22, 1473–1492 (2010).

    Article  Google Scholar 

  • Burak, Y., Rokni, U., Meister, M. & Sompolinsky, H. Bayesian model of dynamic image stabilization in the visual system. Proc. Natl Acad. Sci. USA 107, 19525–19530 (2010).

    Article  CAS  Google Scholar 

  • Cadieu, C. F. & Olshausen, B. A. Learning intermediate-level representations of form and motion from natural movies. Neural Comput. 24, 827–866 (2012).

    Article  Google Scholar 

  • Anderson, A. G., Ratnam, K., Roorda, A. & Olshausen, B. A. High-acuity vision from retinal image motion. J. Vision 20, 34 (2020).

    Article  Google Scholar 

  • Smolensky, P. Tensor product variable binding and the representation of symbolic structures in connectionist systems. Artif. Intell. 46, 159–216 (1990).

    Article  Google Scholar 

  • Jackendoff, R. Foundations of Language: Brain, Meaning, Grammar, Evolution (Oxford Univ. Press, 2002).

  • Hummel, J. E. & Holyoak, K. J. Distributed representations of structure: a theory of analogical access and mapping. Psychol. Rev. 104, 427–466 (1997).

    Article  Google Scholar 

  • Kanerva, P. in Advances in Analogy Research: Integration of Theory and Data from the Cognitive, Computational and Neural Sciences 164–170 (New Bulgarian Univ., 1998).

  • Kanerva, P. Pattern completion with distributed representation. In International Joint Conference on Neural Networks 1416–1421 (IEEE, 1998).

  • Plate, T. A. Analogy retrieval and processing with distributed vector representations. Expert Syst. Int. J. Knowledge Eng. Neural Netw. 17, 29–40 (2000).

    Google Scholar 

  • Gayler, R. W. & Levy, S. D. A distributed basis for analogical mapping: new frontiers in analogy research. In New Frontiers in Analogy Research, Second International Conference on the Analogy 165–174 (New Bulgarian University Press, 2009).

  • Gayler, R. W. Vector symbolic architectures answer Jackendoff’s challenges for cognitive neuroscience. In Joint International Conference on Cognitive Science 133–138 (Springer, 2003).

  • Plate, T. A. Holographic reduced representations. IEEE Trans. Neural Netw. 6, 623–641 (1995).

    Article  CAS  Google Scholar 

  • Plate, T. A. Holographic Reduced Representations: Distributed Representation for Cognitive Structures (Stanford Univ., 2003).

  • Kanerva, P. Hyperdimensional computing: an introduction to computing in distributed representation with high-dimensional random vectors. Cogn. Comput. 1, 139–159 (2009).

    Article  Google Scholar 

  • Frady, E. P., Kent, S. J., Olshausen, B. A. & Sommer, F. T. Resonator networks, 1: an efficient solution for factoring high-dimensional, distributed representations of data structures. Neural Comput. 32, 2311–2331 (2020).

    Article  Google Scholar 

  • Hersche, M., Zeqiri, M., Benini, L., Sebastian, A. & Rahimi, A. A neuro-vector-symbolic architecture for solving Raven’s progressive matrices. Nat. Mach. Intell. https://doi.org/10.1038/s42256-023-00630-8 (2023).

  • Lanza, M. et al. Memristive technologies for data storage, computation, encryption and radio-frequency communication. Science 376, eabj9979 (2022).

    Article  CAS  Google Scholar 

  • Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nat. Nanotechnol. 15, 529–544 (2020).

    Article  CAS  Google Scholar 

  • Wang, Z. et al. Resistive switching materials for information processing. Nat. Rev. Mater. 5, 173–195 (2020).

    Article  CAS  Google Scholar 

  • Kent, S. J., Frady, E. P., Sommer, F. T. & Olshausen, B. A. Resonator networks, 2: factorization performance and capacity compared to optimization-based methods. Neural Comput. 32, 2332–2388 (2020).

    Article  Google Scholar 

  • Wong, H.-S. P. & Salahuddin, S. Memory leads the way to better computing. Nat. Nanotechnol. 10, 191–194 (2015).

    Article  CAS  Google Scholar 

  • Chua, L. Resistance switching memories are memristors. Appl. Phys. A 102, 765–783 (2011).

    Article  CAS  Google Scholar 

  • Shin, J. H., Jeong, Y. J., Zidan, M. A., Wang, Q. & Lu, W. D. Hardware acceleration of simulated annealing of spin glass by RRAM crossbar array. In Proc. IEEE International Electron Devices Meeting 3.3.1–3.3.4 (IEEE, 2018).

  • Bojnordi, M. N. & Ipek, E. Memristive Boltzmann machine: a hardware accelerator for combinatorial optimization and deep learning. In Proc. IEEE International Symposium on High Performance Computer Architecture 1–13 (IEEE, 2016).

  • Mahmoodi, M. R., Prezioso, M. & Strukov, D. B. Versatile stochastic dot product circuits based on nonvolatile memories for high performance neurocomputing and neurooptimization. Nat. Commun. 10, 5113 (2019).

    Article  CAS  Google Scholar 

  • Borders, W. A. et al. Integer factorization using stochastic magnetic tunnel junctions. Nature 573, 390–393 (2019).

    Article  CAS  Google Scholar 

  • Wan, W. et al. 33.1 A 74 TMACS/W CMOS-RRAM neurosynaptic core with dynamically reconfigurable dataflow and in-situ transposable weights for probabilistic graphical models. In Proc. IEEE International Solid-State Circuits Conference 498–500 (IEEE, 2020).

  • Kumar, S., Strachan, J. P. & Williams, R. S. Chaotic dynamics in nanoscale NbO2 Mott memristors for analogue computing. Nature 548, 318–321 (2017).

    Article  CAS  Google Scholar 

  • Cai, F. et al. Power-efficient combinatorial optimization using intrinsic noise in memristor Hopfield neural networks. Nat. Electron. 3, 409–418 (2020).

    Article  Google Scholar 

  • Yang, K. et al. Transiently chaotic simulated annealing based on intrinsic nonlinearity of memristors for efficient solution of optimization problems. Sci. Adv. 6, eaba9901 (2020).

    Article  CAS  Google Scholar 

  • Khaddam-Aljameh, R. et al. Hermes core—a 14nm CMOS and PCM-based in-memory compute core using an array of 300ps/LSB linearized CCO-based ADCs and local digital processing. In 2021 Symposium on VLSI Circuits 1–2 (IEEE, 2021).

  • Tuma, T., Pantazi, A., Le Gallo, M., Sebastian, A. & Eleftheriou, E. Stochastic phase-change neurons. Nat. Nanotechnol. 11, 693–699 (2016).

    Article  CAS  Google Scholar 

  • Le Gallo, M., Krebs, D., Zipoli, F., Salinga, M. & Sebastian, A. Collective structural relaxation in phase-change memory devices. Adv. Electron. Mater. 4, 1700627 (2018).

    Article  Google Scholar 

  • Le Gallo, M. & Sebastian, A. An overview of phase-change memory device physics. J. Phys. D Appl. Phys. 53, 213002 (2020).

    Article  Google Scholar 

  • Zhang, C., Gao, F., Jia, B., Zhu, Y. & Zhu, S.-C. RAVEN: a dataset for relational and analogical visual reasoning. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 5312–5322 (IEEE, 2019).

  • Kent, S. Multiplicative Coding and Factorization in Vector Symbolic Models of Cognition. PhD thesis, Univ. California (2020).

  • Kleyko, D. et al. Integer factorization with compositional distributed representations. In Proc. 9th Annual Neuro-Inspired Computational Elements Conference 73–80 (ACM, 2022).

  • Li, J. et al. Low angle annular dark field scanning transmission electron microscopy analysis of phase change material. In Proc. International Symposium for Testing and Failure Analysis 2021 206–210 (ASM, 2021).

  • Time Stamp:

    More from Nature Nanotechnology