High-density transparent graphene arrays for predicting cellular calcium activity at depth from surface potential recordings - Nature Nanotechnology

High-density transparent graphene arrays for predicting cellular calcium activity at depth from surface potential recordings – Nature Nanotechnology

Source Node: 3059856
  • Frank, J. A., Antonini, M.-J. & Anikeeva, P. Next-generation interfaces for studying neural function. Nat. Biotechnol. 37, 1013–1023 (2019).

    Article  CAS  Google Scholar 

  • Machado, T. A., Kauvar, I. V. & Deisseroth, K. Multiregion neuronal activity: the forest and the trees. Nat. Rev. Neurosci. 23, 683–704 (2022).

    Article  CAS  Google Scholar 

  • Logothetis, N. K. et al. Hippocampal–cortical interaction during periods of subcortical silence. Nature 491, 547–553 (2012).

    Article  CAS  Google Scholar 

  • Gradinaru, V. et al. Optical deconstruction of parkinsonian neural circuitry. Science 324, 354–359 (2009).

    Article  CAS  Google Scholar 

  • Fernández-Ruiz, A. et al. Gamma rhythm communication between entorhinal cortex and dentate gyrus neuronal assemblies. Science 372, eabf3119 (2021).

    Article  Google Scholar 

  • Bi, X.-a et al. A novel CERNNE approach for predicting Parkinson’s disease-associated genes and brain regions based on multimodal imaging genetics data. Med. Image Anal. 67, 101830 (2021).

    Article  Google Scholar 

  • Zhang, D. et al. Multimodal classification of Alzheimer’s disease and mild cognitive impairment. Neuroimage 55, 856–867 (2011).

    Article  Google Scholar 

  • Chiarelli, A. M. et al. Deep learning for hybrid EEG-fNIRS brain–computer interface: application to motor imagery classification. J. Neural Eng. 15, 036028 (2018).

    Article  Google Scholar 

  • Halme, H.-L. & Parkkonen, L. Across-subject offline decoding of motor imagery from MEG and EEG. Sci. Rep. 8, 10087 (2018).

    Article  Google Scholar 

  • Liu, X. et al. Decoding of cortex-wide brain activity from local recordings of neural potentials. J. Neural Eng. 18, 066009 (2021).

    Article  Google Scholar 

  • Siegle, J. H. et al. Survey of spiking in the mouse visual system reveals functional hierarchy. Nature 592, 86–92 (2021).

    Article  CAS  Google Scholar 

  • Kuzum, D. et al. Transparent and flexible low noise graphene electrodes for simultaneous electrophysiology and neuroimaging. Nat. Commun. 5, 5259 (2014).

    Article  CAS  Google Scholar 

  • Park, D.-W. et al. Graphene-based carbon-layered electrode array technology for neural imaging and optogenetic applications. Nat. Commun. 5, 5258 (2014).

    Article  CAS  Google Scholar 

  • Thunemann, M. et al. Deep 2-photon imaging and artifact-free optogenetics through transparent graphene microelectrode arrays. Nat. Commun. 9, 2035 (2018).

    Article  Google Scholar 

  • Driscoll, N. et al. Multimodal in vivo recording using transparent graphene microelectrodes illuminates spatiotemporal seizure dynamics at the microscale. Commun. Biol. 4, 136 (2021).

    Article  CAS  Google Scholar 

  • Park, D.-W. et al. Electrical neural stimulation and simultaneous in vivo monitoring with transparent graphene electrode arrays implanted in GCaMP6f mice. ACS Nano 12, 148–157 (2018).

    Article  CAS  Google Scholar 

  • Ledochowitsch, P. et al. A transparent μECoG array for simultaneous recording and optogenetic stimulation. In Proc. 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2937–2940 (IEEE, 2011).

  • Kwon, K. Y. et al. Opto-μECoG array: a hybrid neural interface with transparent μECoG electrode array and integrated LEDs for optogenetics. IEEE Trans. Biomed. Circuits Syst. 7, 593–600 (2013).

    Article  Google Scholar 

  • Kunori, N. & Takashima, I. A transparent epidural electrode array for use in conjunction with optical imaging. J. Neurosci. Methods 251, 130–137 (2015).

    Article  Google Scholar 

  • Ledochowitsch, P. et al. Strategies for optical control and simultaneous electrical readout of extended cortical circuits. J. Neurosci. Methods 256, 220–231 (2015).

    Article  CAS  Google Scholar 

  • Zhang, J. et al. Stretchable transparent electrode arrays for simultaneous electrical and optical interrogation of neural circuits in vivo. Nano Lett. 18, 2903–2911 (2018).

    Article  CAS  Google Scholar 

  • Chen, Z. et al. Flexible and transparent metal nanowire microelectrode arrays and interconnects for electrophysiology, optogenetics, and optical mapping. Adv. Mater. Technol. 6, 2100225 (2021).

    Article  CAS  Google Scholar 

  • Neto, J. P. et al. Transparent and flexible electrocorticography electrode arrays based on silver nanowire networks for neural recordings. ACS Appl. Nano Mater. 4, 5737–5747 (2021).

    Article  CAS  Google Scholar 

  • Araki, T. et al. Long‐term implantable, flexible, and transparent neural interface based on Ag/Au core–shell nanowires. Adv. Healthc. Mater. 8, 1900130 (2019).

    Article  Google Scholar 

  • Seo, K. J. et al. Transparent electrophysiology microelectrodes and interconnects from metal nanomesh. ACS Nano 11, 4365–4372 (2017).

    Article  CAS  Google Scholar 

  • Seo, J. W. et al. Artifact‐free 2D mapping of neural activity in vivo through transparent gold nanonetwork array. Adv. Funct. Mater. 30, 2000896 (2020).

    Article  CAS  Google Scholar 

  • Obaid, S. N. et al. Multifunctional flexible biointerfaces for simultaneous colocalized optophysiology and electrophysiology. Adv. Funct. Mater. 30, 1910027 (2020).

    Article  CAS  Google Scholar 

  • Qiang, Y. et al. Transparent arrays of bilayer-nanomesh microelectrodes for simultaneous electrophysiology and two-photon imaging in the brain. Sci. Adv. 4, eaat0626 (2018).

    Article  CAS  Google Scholar 

  • Cho, Y. U. et al. Ultra‐low cost, facile fabrication of transparent neural electrode array for electrocorticography with photoelectric artifact‐free optogenetics. Adv. Funct. Mater. 32, 2105568 (2022).

    Article  CAS  Google Scholar 

  • Yang, W. et al. A fully transparent, flexible PEDOT:PSS–ITO–Ag–ITO based microelectrode array for ECoG recording. Lab Chip 21, 1096–1108 (2021).

    Article  CAS  Google Scholar 

  • Kshirsagar, P. et al. Transparent graphene/PEDOT:PSS microelectrodes for electro‐ and optophysiology. Adv. Mater. Technol. 4, 1800318 (2019).

    Article  Google Scholar 

  • Viswam, V. et al. Optimal electrode size for multi-scale extracellular-potential recording from neuronal assemblies. Front. Neurosci. 13, 385 (2019).

    Article  Google Scholar 

  • Rogers, N. et al. Correlation structure in micro-ECoG recordings is described by spatially coherent components. PLoS Comput. Biol. 15, e1006769 (2019).

    Article  CAS  Google Scholar 

  • Harris, K. D. et al. Improving data quality in neuronal population recordings. Nat. Neurosci. 19, 1165–1174 (2016).

    Article  Google Scholar 

  • Akinwande, D. et al. A review on mechanics and mechanical properties of 2D materials—graphene and beyond. Extrem. Mech. Lett. 13, 42–77 (2017).

    Article  Google Scholar 

  • Kireev, D. et al. Continuous cuffless monitoring of arterial blood pressure via graphene bioimpedance tattoos. Nat. Nanotechnol. 17, 864–870 (2022).

    Article  CAS  Google Scholar 

  • Sahni, D. et al. Biocompatibility of pristine graphene for neuronal interface. J. Neurosurg. Pediatr. 11, 575–583 (2013).

    Article  Google Scholar 

  • Liu, X. et al. E-cannula reveals anatomical diversity in sharp-wave ripples as a driver for the recruitment of distinct hippocampal assemblies. Cell Rep. 41, 111453 (2022).

    Article  CAS  Google Scholar 

  • Ding, D. et al. Evaluation of durability of transparent graphene electrodes fabricated on different flexible substrates for chronic in vivo experiments. IEEE Trans. Biomed. Eng. 67, 3203–3210 (2020).

    Article  Google Scholar 

  • Wilson, M. N. et al. Multimodal monitoring of human cortical organoids implanted in mice reveal functional connection with visual cortex. Nat. Commun. 13, 7945 (2022).

    Article  CAS  Google Scholar 

  • Bonaccini Calia, A. et al. Full-bandwidth electrophysiology of seizures and epileptiform activity enabled by flexible graphene microtransistor depth neural probes. Nat. Nanotechnol. 17, 301–309 (2022).

    Article  CAS  Google Scholar 

  • Masvidal-Codina, E. et al. High-resolution mapping of infraslow cortical brain activity enabled by graphene microtransistors. Nat. Mater. 18, 280–288 (2019).

    Article  CAS  Google Scholar 

  • Lu, Y. et al. Ultralow impedance graphene microelectrodes with high optical transparency for simultaneous deep two‐photon imaging in transgenic mice. Adv. Funct. Mater. 28, 1800002 (2018).

    Article  Google Scholar 

  • Xia, J. et al. Measurement of the quantum capacitance of graphene. Nat. Nanotechnol. 4, 505–509 (2009).

    Article  CAS  Google Scholar 

  • Liu, X. et al. Multimodal neural recordings with Neuro-FITM uncover diverse patterns of cortical–hippocampal interactions. Nat. Neurosci. 24, 886–896 (2021).

    Article  CAS  Google Scholar 

  • Łęski, S. et al. Frequency dependence of signal power and spatial reach of the local field potential. PLoS Comput. Biol. 9, e1003137 (2013).

    Article  Google Scholar 

  • Myers, J. C. et al. The spatial reach of neuronal coherence and spike-field coupling across the human neocortex. J. Neurosci. 42, 6285–6294 (2022).

    Article  CAS  Google Scholar 

  • Liu, X. et al. Decoding ECoG high gamma power from cellular calcium response using transparent graphene microelectrodes. In Proc. 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER) 710–713 (IEEE, 2019).

  • Gallego, J. A. et al. Neural manifolds for the control of movement. Neuron 94, 978–984 (2017).

    Article  CAS  Google Scholar 

  • Elsayed, G. F. et al. Reorganization between preparatory and movement population responses in motor cortex. Nat. Commun. 7, 13239 (2016).

    Article  CAS  Google Scholar 

  • Stringer, C. et al. Spontaneous behaviors drive multidimensional, brainwide activity. Science 364, eaav7893 (2019).

    Article  CAS  Google Scholar 

  • Okun, M. et al. Diverse coupling of neurons to populations in sensory cortex. Nature 521, 511–515 (2015).

    Article  CAS  Google Scholar 

  • Stringer, C. et al. High-dimensional geometry of population responses in visual cortex. Nature 571, 361–365 (2019).

    Article  CAS  Google Scholar 

  • Lin, M. Z. & Schnitzer, M. J. Genetically encoded indicators of neuronal activity. Nat. Neurosci. 19, 1142–1153 (2016).

    Article  Google Scholar 

  • Zhang, D. et al. Dealing with the foreign‐body response to implanted biomaterials: strategies and applications of new materials. Adv. Funct. Mater. 31, 2007226 (2021).

    Article  CAS  Google Scholar 

  • Carnicer-Lombarte, A. et al. Foreign body reaction to implanted biomaterials and its impact in nerve neuroprosthetics. Front. Bioeng. Biotechnol. 9, 271 (2021).

  • Salatino, J. W. et al. Glial responses to implanted electrodes in the brain. Nat. Biomed. Eng. 1, 862–877 (2017).

    Article  CAS  Google Scholar 

  • Wang, Y. et al. Electrochemical delamination of CVD-grown graphene film: toward the recyclable use of copper catalyst. ACS Nano 5, 9927–9933 (2011).

    Article  CAS  Google Scholar 

  • Brug, G. et al. The analysis of electrode impedances complicated by the presence of a constant phase element. J. Electroanal. Chem. Interfacial Electrochem. 176, 275–295 (1984).

    Article  CAS  Google Scholar 

  • Mayford, M. et al. Control of memory formation through regulated expression of a CaMKII transgene. Science 274, 1678–1683 (1996).

    Article  CAS  Google Scholar 

  • Wekselblatt, J. B. et al. Large-scale imaging of cortical dynamics during sensory perception and behavior. J. Neurophysiol. 115, 2852–2866 (2016).

    Article  CAS  Google Scholar 

  • Mitani, A. & Komiyama, T. Real-time processing of two-photon calcium imaging data including lateral motion artifact correction. Front. Neuroinform. 12, 98 (2018).

    Article  Google Scholar 

  • Pachitariu, M. et al. Suite2p: beyond 10,000 neurons with standard two-photon microscopy. Preprint at bioRxiv https://doi.org/10.1101/061507 (2016).

  • Yu, B. M. et al. Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population activity. in Advances in Neural Information Processing Systems Vol. 21 (Curran Associates, 2008).

  • Time Stamp:

    More from Nature Nanotechnology