存在扇区约束的因果结构,以及对量子开关的应用

存在扇区约束的因果结构,以及对量子开关的应用

源节点: 2697095

尼克奥姆罗德1, 奥古​​斯丁范里特维尔德1,2,3和乔纳森·巴雷特1

1牛津大学计算机科学系Quantum Group
2伦敦帝国理工学院物理系
3香港大学-牛津大学量子信息与计算联合实验室

觉得本文有趣或想讨论? 在SciRate上发表评论或发表评论.

抽象

现有的关于量子因果结构的工作假设人们可以对感兴趣的系统执行任意操作。 但这个条件往往得不到满足。 在这里,我们将量子因果建模的框架扩展到系统可能受到 $textit{sectorial constraints}$ 的情况,即对其 Hilbert 空间的正交子空间可能相互映射的限制。 我们的框架 (a) 证明了一些关于因果关系的不同直觉结果是等价的; (b) 表明存在扇区约束的量子因果结构可以用有向图表示; (c) 定义因果结构的细粒度,其中系统的各个部分具有因果关系。 例如,我们将我们的框架应用于量子开关的光子实现,以表明虽然它们的粗粒度因果结构是循环的,但它们的细粒度因果结构是非循环的。 因此,我们得出结论,这些实验仅在弱意义上实现了不确定的因果顺序。 值得注意的是,这是第一个不基于因果关系必须局限在时空中的假设的论据。

在科学和日常生活中,我们通常使用因果概念来解释事物。 当我们在街上看到许多水坑时,我们假设它们都是同一个原因的结果——下雨。 当我们鼓励人们戒烟时,是因为我们相信它会致癌。

And yet our most successful scientific theory — quantum theory — suggests our most basic ideas about causation and causal reasoning are somehow mistaken. The famous nonlocal correlations that violate Bell's inequalities resist causal explanation as traditionally understood, and the possibility of putting objects into superpositions seems to allow for situations in which there is no definite fact about the direction of causal influence.

As a result, there has been much effort in recent years to modify our causal notions for a quantum setting. Our paper extends the study of intrinsically quantum causal structures to a new range of scenarios. One of the consequences is that recent experiments that aim to create an indefinite direction of causal influence can be understood as "weakly" indefinite — even more strongly indefinite directions of influence are conceivable.

►BibTeX数据

►参考

[1] L. Hardy, ``Towards quantum gravity: a framework for probabilistic theories with non-fixed causal structure,'' Journal of Physics A: Mathematical and Theoretical 40 no. 12, (2007) 3081, arXiv:gr-qc/​0608043.
https:/​/​doi.org/​10.1088/​1751-8113/​40/​12/​S12
arXiv:gr-qc / 0608043

[2] G. Chiribella, G. M. D’Ariano, P. Perinotti, and B. Valiron, ``Quantum computations without definite causal structure,'' Physical Review A 88 no. 2, (Aug, 2013) , arXiv:0912.0195 [quant-ph].
https:///doi.org/10.1103/physreva.88.022318
的arXiv:0912.0195

[3] O. Oreshkov, F. Costa, and Č. Brukner, ``Quantum correlations with no causal order,'' Nature communications 3 no. 1, (2012) 1–8, arXiv:1105.4464 [quant-ph].
https:///doi.org/10.1038/ncomms2076
的arXiv:1105.4464

[4] M. Araújo, C. Branciard, F. Costa, A. Feix, C. Giarmatzi, and Č. Brukner, ``Witnessing causal nonseparability,'' New Journal of Physics 17 no. 10, (2015) 102001, arXiv:1506.03776 [quant-ph].
https:/​/​doi.org/​10.1088/​1367-2630/​17/​10/​102001
的arXiv:1506.03776

[5] J. Barrett, R. Lorenz, and O. Oreshkov, ``Quantum causal models,'' (2020) , arXiv:1906.10726 [quant-ph].
的arXiv:1906.10726

[6] N. Paunković and M. Vojinović, ``Causal orders, quantum circuits and spacetime: distinguishing between definite and superposed causal orders,'' Quantum 4 (2020) 275, arXiv:1905.09682 [quant-ph].
https:/​/​doi.org/​10.22331/​q-2020-05-28-275
的arXiv:1905.09682

[7] D. Felce and V. Vedral, ``Quantum refrigeration with indefinite causal order,'' Physical Review Letters 125 (Aug, 2020) 070603, arXiv:2003.00794 [quant-ph].
https:/ / doi.org/ 10.1103 / PhysRevLett.125.070603
的arXiv:2003.00794

[8] J. Barrett, R. Lorenz, and O. Oreshkov, ``Cyclic quantum causal models,'' Nature Communications 12 no. 1, (2021) 1–15, arXiv:2002.12157 [quant-ph].
https:///doi.org/10.1038/s41467-020-20456-x
的arXiv:2002.12157

[9] A. Kissinger and S. Uijlen, ``A categorical semantics for causal structure,'' Logical Methods in Computer Science Volume 15, Issue 3 (2019) , arXiv:1701.04732 [quant-ph].
https:/​/​doi.org/​10.23638/​LMCS-15(3:15)2019
的arXiv:1701.04732

[10] R. Lorenz and J. Barrett, ``Causal and compositional structure of unitary transformations,'' Quantum 5 (2021) 511, arXiv:2001.07774 [quant-ph].
https:/​/​doi.org/​10.22331/​q-2021-07-28-511
的arXiv:2001.07774

[11] C. Branciard, M. Araújo, A. Feix, F. Costa, and Č. Brukner, ``The simplest causal inequalities and their violation,'' New Journal of Physics 18 no. 1, (2015) 013008, arXiv:1508.01704 [quant-ph].
https:/​/​doi.org/​10.1088/​1367-2630/​18/​1/​013008
的arXiv:1508.01704

[12] M. Araújo, F. Costa, and i. c. v. Brukner, ``Computational advantage from quantum-controlled ordering of gates,'' Physical Review Letters 113 (Dec, 2014) 250402, arXiv:1401.8127 [quant-ph].
https:/ / doi.org/ 10.1103 / PhysRevLett.113.250402
的arXiv:1401.8127

[13] D. Felce, N. T. Vidal, V. Vedral, and E. O. Dias, ``Indefinite causal orders from superpositions in time,'' Physical Review A 105 no. 6, (2022) 062216, arXiv:2107.08076 [quant-ph].
https:/ / doi.org/ 10.1103 / PhysRevA.105.062216
的arXiv:2107.08076

[14] L. M. Procopio, A. Moqanaki, M. Araújo, F. Costa, I. A. Calafell, E. G. Dowd, D. R. Hamel, L. A. Rozema, Č. Brukner, and P. Walther, ``Experimental superposition of orders of quantum gates,'' Nature communications 6 no. 1, (2015) 1–6, arXiv:1412.4006 [quant-ph].
https:///doi.org/10.1038/ncomms8913
的arXiv:1412.4006

[15] G. Rubino, L. A. Rozema, A. Feix, M. Araújo, J. M. Zeuner, L. M. Procopio, Č. Brukner, and P. Walther, ``Experimental verification of an indefinite causal order,'' Science advances 3 no. 3, (2017) e1602589, arXiv:1608.01683 [quant-ph].
https:/ / doi.org/ 10.1126 / sciadv.1602589
的arXiv:1608.01683

[16] K. Goswami, C. Giarmatzi, M. Kewming, F. Costa, C. Branciard, J. Romero, and A. G. White, ``Indefinite causal order in a quantum switch,'' Physical review letters 121 no. 9, (2018) 090503, arXiv:1803.04302 [quant-ph].
https:///doi.org/10.1103/physrevlett.121.090503
的arXiv:1803.04302

[17] G. Rubino, L. A. Rozema, F. Massa, M. Araújo, M. Zych, v. Brukner, and P. Walther, ``Experimental entanglement of temporal order,'' Quantum 6 (2022) 621, arXiv:1712.06884 [quant-ph].
https:/​/​doi.org/​10.22331/​q-2022-01-11-621
的arXiv:1712.06884

[18] X. Nie, X. Zhu, C. Xi, X. Long, Z. Lin, Y. Tian, C. Qiu, X. Yang, Y. Dong, J. Li, T. Xin, and D. Lu, ``Experimental realization of a quantum refrigerator driven by indefinite causal orders,'' Physical Review Letters 129 no. 10, (2022) 100603, arXiv:2011.12580 [quant-ph].
https:/ / doi.org/ 10.1103 / PhysRevLett.129.100603
的arXiv:2011.12580

[19] H. Cao, N.-n. Wang, Z.-A. Jia, C. Zhang, Y. Guo, B.-H. Liu, Y.-F. Huang, C.-F. Li, and G.-C. Guo, ``Experimental demonstration of indefinite causal order induced quantum heat extraction,'' (2021) , arXiv:2101.07979 [quant-ph].
的arXiv:2101.07979

[20] K. Goswami and J. Romero, ``Experiments on quantum causality,'' AVS Quantum Science 2 no. 3, (Oct, 2020) 037101, arXiv:2009.00515 [quant-ph].
https:/ / doi.org/10.1116/ 5.0010747
的arXiv:2009.00515

[21] L. Hardy, ``Quantum gravity computers: On the theory of computation with indefinite causal structure,'' Quantum Reality, Relativistic Causality, and Closing the Epistemic Circle (2009) 379–401, arXiv:quant-ph/​0701019.
https:/​/​doi.org/​10.1007/​978-1-4020-9107-0_21
arXiv:quant-ph / 0701019

[22] G. Chiribella, G. M. D’Ariano, and P. Perinotti, ``Theoretical framework for quantum networks,'' Physical Review A 80 no. 2, (Aug, 2009) , arXiv:0904.4483 [quant-ph].
https:///doi.org/10.1103/physreva.80.022339
的arXiv:0904.4483

[23] G. Chiribella, G. D’Ariano, P. Perinotti, and B. Valiron, ``Beyond quantum computers,'' (2009) , arXiv:0912.0195v1 [quant-ph].
arXiv:0912.0195v1

[24] G. Chiribella, ``Perfect discrimination of no-signalling channels via quantum superposition of causal structures,'' Physical Review A 86 no. 4, (Oct, 2012) , arXiv:1109.5154 [quant-ph].
https:///doi.org/10.1103/physreva.86.040301
的arXiv:1109.5154

[25] T. Colnaghi, G. M. D'Ariano, S. Facchini, and P. Perinotti, ``Quantum computation with programmable connections between gates,'' Physics Letters A 376 no. 45, (Oct, 2012) 2940–2943, arXiv:1109.5987 [quant-ph].
https:///doi.org/10.1016/j.physleta.2012.08.028
的arXiv:1109.5987

[26] Ä. Baumeler and S. Wolf, ``The space of logically consistent classical processes without causal order,'' New Journal of Physics 18 no. 1, (2016) 013036, arXiv:1507.01714 [quant-ph].
https:/​/​doi.org/​10.1088/​1367-2630/​18/​1/​013036
的arXiv:1507.01714

[27] Ä. Baumeler, A. Feix, and S. Wolf, ``Maximal incompatibility of locally classical behavior and global causal order in multiparty scenarios,'' Physical Review A 90 no. 4, (2014) 042106, arXiv:1403.7333 [quant-ph].
https:/ / doi.org/ 10.1103 / PhysRevA.90.042106
的arXiv:1403.7333

[28] M. Araújo, A. Feix, M. Navascués, and Č. Brukner, ``A purification postulate for quantum mechanics with indefinite causal order,'' Quantum 1 (Apr, 2017) 10, arXiv:1611.08535 [quant-ph].
https:/​/​doi.org/​10.22331/​q-2017-04-26-10
的arXiv:1611.08535

[29] A. Vanrietvelde, N. Ormrod, H. Kristjánsson, and J. Barrett, ``Consistent circuits for indefinite causal order,'' (2022) , arXiv:2206.10042 [quant-ph].
的arXiv:2206.10042

[30] H. Reichenbach,时间的方向,卷。 65. 加州大学出版社,1956 年。
https:/ / doi.org/10.2307/ 2216858

[31] C. J. Wood and R. W. Spekkens, ``The lesson of causal discovery algorithms for quantum correlations: causal explanations of bell-inequality violations require fine-tuning,'' New Journal of Physics 17 no. 3, (Mar, 2015) 033002, arXiv:1208.4119 [quant-ph].
https:/​/​doi.org/​10.1088/​1367-2630/​17/​3/​033002
的arXiv:1208.4119

[32] J.-M. A. Allen, J. Barrett, D. C. Horsman, C. M. Lee, and R. W. Spekkens, ``Quantum common causes and quantum causal models,'' Physical Review X 7 no. 3, (Jul, 2017) , arXiv:1609.09487 [quant-ph].
https:/ / doi.org/ 10.1103 / physrevx.7.031021
的arXiv:1609.09487

[33] J. Pearl,因果关系。 剑桥大学出版社,2009。
https:/ / doi.org/ 10.1017 / CBO9780511803161

[34] J. Pienaar and Č. Brukner, ``A graph-separation theorem for quantum causal models,'' New Journal of Physics 17 no. 7, (2015) 073020, arXiv:1406.0430v3 [quant-ph].
https:/​/​doi.org/​10.1088/​1367-2630/​17/​7/​073020
arXiv:1406.0430v3

[35] F. Costa and S. Shrapnel, ``Quantum causal modelling,'' New Journal of Physics 18 no. 6, (June, 2016) 063032, arXiv:1512.07106 [quant-ph].
https:/​/​doi.org/​10.1088/​1367-2630/​18/​6/​063032
的arXiv:1512.07106

[36] J. Pienaar, ``A time-reversible quantum causal model,'' (2019) , arXiv:1902.00129 [quant-ph].
的arXiv:1902.00129

[37] J. Pienaar, ``Quantum causal models via quantum bayesianism,'' Physical Review A 101 no. 1, (2020) 012104, arXiv:1806.00895 [quant-ph].
https:/ / doi.org/ 10.1103 / PhysRevA.101.012104
的arXiv:1806.00895

[38] S. Gogioso and N. Pinzani, ``The topology and geometry of causality,'' (2022) . https:/​/​arxiv.org/​abs/​2206.08911.
https:///doi.org/10.48550/ARXIV.2206.08911
的arXiv:2206.08911

[39] G. Chiribella and H. Kristjánsson, ``Quantum shannon theory with superpositions of trajectories,'' Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 475 no. 2225, (May, 2019) 20180903, arXiv:1812.05292 [quant-ph].
https:/ / doi.org/ 10.1098 / rspa.2018.0903
的arXiv:1812.05292

[40] Y. Aharonov and D. Bohm, ``Significance of electromagnetic potentials in the quantum theory,'' Physical Review 115 (Aug, 1959) 485–491.
https:/ / doi.org/ 10.1103 / PhysRev.115.485

[41] N. Erez, ``AB effect and aharonov–susskind charge non-superselection,'' Journal of Physics A: Mathematical and Theoretical 43 no. 35, (Aug, 2010) 354030, arXiv:1003.1044 [quant-ph].
https:/​/​doi.org/​10.1088/​1751-8113/​43/​35/​354030
的arXiv:1003.1044

[42] F. D. Santo and B. Dakić, ``Two-way communication with a single quantum particle,'' Physical Review Letters 120 no. 6, (Feb, 2018) , arXiv:1706.08144 [quant-ph].
https:///doi.org/10.1103/physrevlett.120.060503
的arXiv:1706.08144

[43] L.-Y. Hsu, C.-Y. Lai, Y.-C. Chang, C.-M. Wu, and R.-K. Lee, ``Carrying an arbitrarily large amount of information using a single quantum particle,'' Physical Review A 102 (Aug, 2020) 022620, arXiv:2002.10374 [quant-ph].
https:/ / doi.org/ 10.1103 / PhysRevA.102.022620
的arXiv:2002.10374

[44] F. Massa, A. Moqanaki, Ämin Baumeler, F. D. Santo, J. A. Kettlewell, B. Dakić , and P. Walther, ``Experimental two-way communication with one photon,'' Advanced Quantum Technologies 2 no. 11, (Sep, 2019) 1900050, arXiv:1802.05102 [quant-ph].
https:/ / doi.org/ 10.1002 / qute.201900050
的arXiv:1802.05102

[45] R. Faleiro, N. Paunkovic, and M. Vojinovic, ``Operational interpretation of the vacuum and process matrices for identical particles,'' Quantum 7 (2023) 986, arXiv:2010.16042 [quant-ph].
https:/​/​doi.org/​10.22331/​q-2023-04-20-986
的arXiv:2010.16042

[46] I. Marvian and R. W. Spekkens, ``A generalization of Schur–Weyl duality with applications in quantum estimation,'' Communications in Mathematical Physics 331 no. 2, (2014) 431–475, arXiv:1112.0638 [quant-ph].
https:/​/​doi.org/​10.1007/​s00220-014-2059-0
的arXiv:1112.0638

[47] AW Harrow,相干经典通信的应用和舒尔变换到量子信息理论。 博士论文,麻省理工学院,2005。arXiv:quant-ph/0512255。
arXiv:quant-ph / 0512255

[48] G. M. Palma, K.-A. Suominen, and A. K. Ekert, ``Quantum computers and dissipation,'' Proceedings of the Royal Society A 452 (1996) 567–584, arXiv:quant-ph/​9702001.
https:/ / doi.org/ 10.1098 / rspa.1996.0029
arXiv:quant-ph / 9702001

[49] L.-M. Duan and G.-C. Guo, ``Preserving coherence in quantum computation by pairing the quantum bits,'' Physical Review Letters 79 (1997) 1953–1956, arXiv:quant-ph/​9703040.
https:/ / doi.org/ 10.1103 / PhysRevLett.79.1953
arXiv:quant-ph / 9703040

[50] P. Zanardi and M. Rasetti, ``Noiseless quantum codes,'' Physical Review Letters 79 no. 17, (1997) 3306, arXiv:quant-ph/​9705044.
https:/ / doi.org/ 10.1103 / PhysRevLett.79.3306
arXiv:quant-ph / 9705044

[51] D. A. Lidar, I. L. Chuang, and K. B. Whaley, ``Decoherence-free subspaces for quantum computation,'' Physical Review Letters 81 no. 12, (1998) 2594, arXiv:quant-ph/​9807004.
https:/ / doi.org/ 10.1103 / PhysRevLett.81.2594
arXiv:quant-ph / 9807004

[52] A. Beige, D. Braun, B. Tregenna, and P. L. Knight, ``Quantum computing using dissipation to remain in a decoherence-free subspace,'' Physical Review Letters 85 no. 8, (2000) 1762.
https:/ / doi.org/ 10.1103 / PhysRevLett.85.1762

[53] P. G. Kwiat, A. J. Berglund, J. B. Altepeter, and A. G. White, ``Experimental verification of decoherence-free subspaces,'' Science 290 no. 5491, (2000) 498–501.
https:/ / doi.org/ 10.1126 / science.290.5491.498

[54] O. Oreshkov, ``Time-delocalized quantum subsystems and operations: on the existence of processes with indefinite causal structure in quantum mechanics,'' Quantum 3 (2019) 206, arXiv:1801.07594 [quant-ph].
https:/​/​doi.org/​10.22331/​q-2019-12-02-206
的arXiv:1801.07594

[55] A. Vanrietvelde, H. Kristjánsson, and J. Barrett, ``Routed quantum circuits,'' Quantum 5 (Jul, 2021) 503, arXiv:2011.08120 [quant-ph].
https:/​/​doi.org/​10.22331/​q-2021-07-13-503
的arXiv:2011.08120

[56] A. Vanrietvelde and G. Chiribella, ``Universal control of quantum processes using sector-preserving channels,'' Quantum Information and Computation 21 no. 15-16, (Dec, 2021) 1320–1352, arXiv:2106.12463 [quant-ph].
https:/ / doi.org/ 10.26421 / QIC21.15-16-5
的arXiv:2106.12463

[57] M. Wilson and A. Vanrietvelde, ``Composable constraints,'' (2021) , arXiv:2112.06818 [math.CT].
的arXiv:2112.06818

[58] A. A. Abbott, J. Wechs, D. Horsman, M. Mhalla, and C. Branciard, ``Communication through coherent control of quantum channels,'' Quantum 4 (Sep, 2020) 333, arXiv:1810.09826 [quant-ph].
https:/​/​doi.org/​10.22331/​q-2020-09-24-333
的arXiv:1810.09826

[59] H. Kristjánsson, G. Chiribella, S. Salek, D. Ebler, and M. Wilson, ``Resource theories of communication,'' New Journal of Physics 22 no. 7, (Jul, 2020) 073014, arXiv:1910.08197 [quant-ph].
https:/​/​doi.org/​10.1088/​1367-2630/​ab8ef7
的arXiv:1910.08197

[60] I. Friend, ``Private communication,'' (2022).

[61] G. Chiribella, G. M. D’Ariano, and P. Perinotti, ``Transforming quantum operations: Quantum supermaps,'' EPL (Europhysics Letters) 83 no. 3, (Jul, 2008) 30004, arXiv:0804.0180 [quant-ph].
https:/​/​doi.org/​10.1209/​0295-5075/​83/​30004
的arXiv:0804.0180

[62] M. Zych, F. Costa, I. Pikovski, and Č. Brukner, ``Bell’s theorem for temporal order,'' Nature communications 10 no. 1, (2019) 1–10, arXiv:1708.00248 [quant-ph].
https:///doi.org/10.1038/s41467-019-11579-x
的arXiv:1708.00248

[63] N. S. Móller, B. Sahdo, and N. Yokomizo, ``Quantum switch in the gravity of Earth,'' Physical Review A 104 no. 4, (2021) 042414, arXiv:2012.03989 [quant-ph].
https:/ / doi.org/ 10.1103 / PhysRevA.104.042414
的arXiv:2012.03989

[64] J. Wechs, C. Branciard, and O. Oreshkov, ``Existence of processes violating causal inequalities on time-delocalised subsystems,'' Nature Communications 14 no. 1, (2023) 1471, arXiv:2201.11832 [quant-ph].
https:/​/​doi.org/​10.1038/​s41467-023-36893-3
的arXiv:2201.11832

[65] V. Vilasini, ``An introduction to causality in quantum theory (and beyond) (master's thesis),'' (2017) . https:/​/​foundations.ethz.ch/​wp-content/​uploads/​2019/​07/​vilasini_master_thesis-v2.pdf.
https://foundations.ethz.ch/wp-content/uploads/2019/07/vilasini_master_thesis-v2.pdf

[66] V. Vilasini, ``Causality in definite and indefinite space-times (extended abstract for qpl 2020),'' (2020) . https:/​/​wdi.centralesupelec.fr/​users/​valiron/​qplmfps/​papers/​qs01t3.pdf.
https://wdi.centralesupelec.fr/users/valiron/qplmfps/papers/qs01t3.pdf

[67] C. Portmann, C. Matt, U. Maurer, R. Renner, and B. Tackmann, ``Causal boxes: quantum information-processing systems closed under composition,'' IEEE Transactions on Information Theory 63 no. 5, (2017) 3277–3305. https:/​/​doi.org/​10.1109/​TIT.2017.2676805.
https:///doi.org/10.1109/TIT.2017.2676805

[68] B. d'Espagnat, ``An elementary note about `mixtures','' Preludes in Theoretical Physics in honor of VF Weisskopf (1966) 185.

[69] B. d'Espagnat,量子力学的概念基础。 CRC 出版社,2018 年。
https:/ / doi.org/10.1201/ 9780429501449

[70] S. D. Bartlett, T. Rudolph, and R. W. Spekkens, ``Reference frames, superselection rules, and quantum information,'' Review of Modern Physics 79 (Apr, 2007) 555–609, arXiv:quant-ph/​0610030.
https:/ / doi.org/ 10.1103 / RevModPhys.79.555
arXiv:quant-ph / 0610030

[71] V. Vilasini and R. Renner, ``Embedding cyclic causal structures in acyclic spacetimes: no-go results for process matrices,'' (2022) , arXiv:2203.11245 [quant-ph].
的arXiv:2203.11245

[72] B. Schumacher and M. D. Westmoreland, ``Locality and information transfer in quantum operations,'' Quantum Information Processing 4 no. 1, (2005) 13–34, arXiv:quant-ph/​0406223.
https:/ / doi.org/ 10.1007 / s11128-004-3193-y
arXiv:quant-ph / 0406223

被引用

[1] Nikola Paunković and Marko Vojinović, "Equivalence Principle in Classical and Quantum Gravity", 宇宙8 11,598(2022).

[2] Julian Wechs, Cyril Branciard, and Ognyan Oreshkov, "Existence of processes violating causal inequalities on time-delocalised subsystems", 自然通讯14,1471(2023).

[3] Huan Cao, Jessica Bavaresco, Ning-Ning Wang, Lee A. Rozema, Chao Zhang, Yun-Feng Huang, Bi-Heng Liu, Chuan-Feng Li, Guang-Can Guo, and Philip Walther, "Semi-device-independent certification of indefinite causal order in a photonic quantum switch", 眼镜10 5,561(2023).

[4] Augustin Vanrietvelde, Nick Ormrod, Hlér Kristjánsson, and Jonathan Barrett, "Consistent circuits for indefinite causal order", 的arXiv:2206.10042, (2022).

[5] Pedro R. Dieguez, Vinicius F. Lisboa, and Roberto M. Serra, "Thermal devices powered by generalized measurements with indefinite causal order", 物理评论A 107 1,012423(2023).

[6] Matt Wilson, Giulio Chiribella, and Aleks Kissinger, "Quantum Supermaps are Characterized by Locality", 的arXiv:2205.09844, (2022).

[7] Marco Fellous-Asiani, Raphaël Mothe, Léa Bresque, Hippolyte Dourdent, Patrice A. Camati, Alastair A. Abbott, Alexia Auffèves, and Cyril Branciard, "Comparing the quantum switch and its simulations with energetically constrained operations", 物理评论研究5 2,023111(2023).

[8] Nick Ormrod, V. Vilasini, and Jonathan Barrett, "Which theories have a measurement problem?", 的arXiv:2303.03353, (2023).

[9] Tein van der Lugt, Jonathan Barrett, and Giulio Chiribella, "Device-independent certification of indefinite causal order in the quantum switch", 的arXiv:2208.00719, (2022).

[10] Robin Lorenz 和 Sean Tull,“弦图中的因果模型”, 的arXiv:2304.07638, (2023).

[11] Michael Antesberger、Marco Túlio Quintino、Philip Walther 和 Lee A. Rozema,“被动稳定量子开关的高阶过程矩阵断层扫描”, 的arXiv:2305.19386, (2023).

[12] Martin Sandfuchs、Marcus Haberland、V. Vilasini 和 Ramona Wolf,“基于相对论原理的微分相移 QKD 的安全性”, 的arXiv:2301.11340, (2023).

[13] Ricardo Faleiro, Nikola Paunkovic, and Marko Vojinovic, "Operational interpretation of the vacuum and process matrices for identical particles", 的arXiv:2010.16042, (2020).

[14] Eleftherios-Ermis Tselentis and Ämin Baumeler, "Admissible Causal Structures and Correlations", 的arXiv:2210.12796, (2022).

[15] Ricardo Faleiro, Nikola Paunkovic, and Marko Vojinovic, "Operational interpretation of the vacuum and process matrices for identical particles", 量子7,986(2023).

以上引用来自 SAO / NASA广告 (最近成功更新为2023-06-03 12:58:29)。 该列表可能不完整,因为并非所有发布者都提供合适且完整的引用数据。

On Crossref 的引用服务 找不到有关引用作品的数据(上一次尝试2023-06-03 12:58:28)。

时间戳记:

更多来自 量子杂志