Scalable CMOS back-end-of-line-compatible AlScN/two-dimensional channel ferroelectric field-effect transistors - Nature Nanotechnology

Scalable CMOS back-end-of-line-compatible AlScN/two-dimensional channel ferroelectric field-effect transistors – Nature Nanotechnology

Source Node: 2670164
  • Migliato Marega, G. et al. Logic-in-memory based on an atomically thin semiconductor. Nature 587, 72–77 (2020).

    Article  CAS  Google Scholar 

  • Wang, Z. et al. Resistive switching materials for information processing. Nat. Rev. Mater. 5, 173–195 (2020).

    Article  CAS  Google Scholar 

  • Yang, R. et al. Ternary content-addressable memory with MoS2 transistors for massively parallel data search. Nat. Electron. 2, 108–114 (2019).

    Article  Google Scholar 

  • Shulaker, M. M. et al. Three-dimensional integration of nanotechnologies for computing and data storage on a single chip. Nature 547, 74–78 (2017).

    Article  CAS  Google Scholar 

  • Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nat. Nanotechnol. 15, 529–544 (2020).

    Article  CAS  Google Scholar 

  • Dutta, S. et al. Monolithic 3D integration of high endurance multi-bit ferroelectric FET for accelerating compute-in-memory. In 2020 IEEE International Electron Devices Meeting (IEDM) 36.4.1–36.4.4 (IEEE, 2020).

  • Khan, A. I., Keshavarzi, A. & Datta, S. The future of ferroelectric field-effect transistor technology. Nat. Electron. 3, 588–597 (2020).

    Article  Google Scholar 

  • Akinwande, D. et al. Graphene and two-dimensional materials for silicon technology. Nature 573, 507–518 (2019).

    Article  CAS  Google Scholar 

  • Polyushkin, D. K. et al. Analogue two-dimensional semiconductor electronics. Nat. Electron. 3, 486–491 (2020).

    Article  CAS  Google Scholar 

  • Ni, K. et al. Ferroelectric ternary content-addressable memory for one-shot learning. Nat. Electron. 2, 521–529 (2019).

    Article  Google Scholar 

  • Wang, D. et al. Ferroelectric switching in sub-20 nm aluminum scandium nitride thin films. IEEE Electron Device Lett. 41, 1774–1777 (2020).

    Article  CAS  Google Scholar 

  • Liu, X. et al. Post-CMOS compatible aluminum scandium nitride/2D channel ferroelectric field-effect-transistor memory. Nano Lett. 21, 3753–3761 (2021).

    Article  CAS  Google Scholar 

  • Tsai, S.-L. et al. Room-temperature ÿdeposition of a poling-free ferroelectric AlScN film by reactive sputtering. Appl. Phys. Lett. 118, 082902 (2021).

    Article  CAS  Google Scholar 

  • Wang, D. et al. Sub-microsecond polarization switching in (Al,Sc)N ferroelectric capacitors grown on complementary metal-oxide-semiconductor-compatible aluminum electrodes. Phys. Status Solidi RRL 15, 2000575 (2021).

    Article  CAS  Google Scholar 

  • Islam, M. R. et al. On the exceptional temperature stability of ferroelectric Al1-xScxN thin films. Appl. Phys. Lett. 118, 232905 (2021).

    Article  CAS  Google Scholar 

  • Fichtner, S., Wolff, N., Lofink, F., Kienle, L. & Wagner, B. AlScN: a III-V semiconductor based ferroelectric. J. Appl. Phys. 125, 114103 (2019).

    Article  Google Scholar 

  • Lederer, M. et al. Local crystallographic phase detection and texture mapping in ferroelectric Zr doped HfO2 films by transmission-EBSD. Appl. Phys. Lett. 115, 222902 (2019).

    Article  Google Scholar 

  • Dragoman, M. et al. Ferroelectrics at the nanoscale: materials and devices—a critical review. Crit. Rev. Solid State Mater. Sci. 1–19 (2022).

  • Siao, M. D. et al. Two-dimensional electronic transport and surface electron accumulation in MoS2. Nat. Commun. 9, 1442 (2018).

    Article  CAS  Google Scholar 

  • Mulaosmanovic, H. et al. Ferroelectric field-effect transistors based on HfO2: a review. Nanotechnology 32, 502002 (2021).

    Article  CAS  Google Scholar 

  • Mikolajick, T. et al. Next generation ferroelectric materials for semiconductor process integration and their applications. J. Appl. Phys. 129, 100901 (2021).

    Article  CAS  Google Scholar 

  • Aljarb, A. et al. Ledge-directed epitaxy of continuously self-aligned single-crystalline nanoribbons of transition metal dichalcogenides. Nat. Mater. 19, 1300–1306 (2020).

    Article  CAS  Google Scholar 

  • Sebastian, A., Pendurthi, R., Choudhury, T. H., Redwing, J. M. & Das, S. Benchmarking monolayer MoS2 and WS2 field-effect transistors. Nat. Commun. 12, 693 (2021).

    Article  CAS  Google Scholar 

  • Zhang, Y., Brar, V. W., Girit, C., Zettl, A. & Crommie, M. F. Origin of spatial charge inhomogeneity in graphene. Nat. Phys. 5, 722–726 (2009).

    Article  CAS  Google Scholar 

  • Liu, Y.-S. & Su, P. Variability analysis for ferroelectric FET nonvolatile memories considering random ferroelectric-dielectric phase distribution. IEEE Electron Device Lett. 41, 369–372 (2020).

    Article  CAS  Google Scholar 

  • Lederer, M. et al. Ferroelectric field effect transistors as a synapse for neuromorphic application. IEEE Trans. Electron Devices 68, 2295–2300 (2021).

    Article  CAS  Google Scholar 

  • Luo, Y et al. MLP+NeuroSimV3.0: improving on-chip learning performance with device to algorithm optimizations. In ICONS ’19: Proc. International Conference on Neuromorphic Systems 1–7 (ACM, 2019).

  • Ko, C. et al. Ferroelectrically gated atomically thin transition-metal dichalcogenides as nonvolatile memory. Adv. Mater. 28, 2923–2930 (2016).

    Article  CAS  Google Scholar 

  • Xu, L. et al. Ferroelectric-modulated MoS2 field-effect transistors as multilevel nonvolatile memory. ACS Appl. Mater. Interfaces 12, 44902–44911 (2020).

    Article  CAS  Google Scholar 

  • Young Tack Lee, H. K. et al. Nonvolatile ferroelectric memory circuit using black phosphorus nanosheet-based field-effect transistors with P(VDF-TrFE) polymer. ACS Nano 9, 10394–10401 (2015).

    Article  Google Scholar 

  • Jiang, X. et al. Ferroelectric field-effect transistors based on WSe2/CuInP2S6 heterostructures for memory applications. ACS Appl. Electron. Mater. 3, 4711–4717 (2021).

    Article  CAS  Google Scholar 

  • Si, M., Liao, P. Y., Qiu, G., Duan, Y. & Ye, P. D. Ferroelectric field-effect transistors based on MoS2 and CuInP2S6 two-dimensional van der Waals heterostructure. ACS Nano 12, 6700–6705 (2018).

    Article  CAS  Google Scholar 

  • Wang, X. et al. Ferroelectric FET for nonvolatile memory application with two-dimensional MoSe2 channels. 2D Mater 4, 025036 (2017).

    Article  Google Scholar 

  • Liu, L. et al. Electrical characterization of MoS2 field-effect transistors with different dielectric polymer gate. AIP Adv 7, 065121 (2017).

    Article  Google Scholar 

  • Jiawen, X. et al. Experimental demonstration of HfO2-based ferroelectric FET with MoS2 channel for high-density and low-power memory application. In 2021 Silicon Nanoelectronics Workshop (SNW) 1–2 (IEEE, 2021).

  • Huang, K. et al. Hf0.5Zr0.5O2 ferroelectric embedded dual-gate MoS2 field effect transistors for memory merged logic applications. IEEE Electron Device Lett. 41, 1600–1603 (2020).

    Article  CAS  Google Scholar 

  • Zhang, S. et al. Low voltage operating 2D MoS2 ferroelectric memory transistor with Hf1–xZrxO2 gate structure. Nanoscale Res. Lett. 15, 157 (2020).

    Article  CAS  Google Scholar 

  • Time Stamp:

    More from Nature Nanotechnology