Orally delivered single-domain antibodies against gastrointestinal pathogens

Orally delivered single-domain antibodies against gastrointestinal pathogens

Source Node: 1949266
    • World Health Organization

    Global Action Plan on Antimicrobial Resistance.

    World Health Organization, 2015

    • Tagliabue A.
    • Rappuoli R.

    Changing priorities in vaccinology: antibiotic resistance moving to the top.

    Front. Immunol. 2018; 9: 1068

    • Niewiesk S.

    Maternal antibodies: clinical significance, mechanism of interference with immune responses, and possible vaccination strategies.

    Front. Immunol. 2014; 5: 446

    • Slifka M.K.
    • Amanna I.J.

    Passive immunization.

    Plotkins Vacc. 2018; 2018: 85-95

    • Czosnykowska-Łukacka M.
    • et al.

    Changes in human milk immunoglobulin profile during prolonged lactation.

    Front. Pediatr. 2020; 8: 428

    • Laustsen A.H.
    • et al.

    Animal immunization, in vitro display technologies, and machine learning for antibody discovery.

    Trends Biotechnol. 2021; 39: 1263-1273

    • Rouet R.
    • et al.

    Fully human VH single domains that rival the stability and cleft recognition of camelid antibodies.

    J. Biol. Chem. 2015; 290: 11905-11917

    • Muyldermans S.

    Applications of nanobodies.

    Annu. Rev. Anim. Biosci. 2021; 9: 401-421

    • Muyldermans S.

    Nanobodies: natural single-domain antibodies.

    Annu. Rev. Biochem. 2013; 82: 775-797

    • Steeland S.
    • et al.

    Nanobodies as therapeutics: big opportunities for small antibodies.

    Drug Discov. Today. 2016; 21: 1076-1113

    • Pérez J.M.
    • et al.

    Thermal unfolding of a llama antibody fragment: a two-state reversible process.

    Biochemistry. 2001; 40: 74-83

    • Lauwereys M.
    • et al.

    Potent enzyme inhibitors derived from dromedary heavy-chain antibodies.

    EMBO J. 1998; 17: 3512-3520

    • Dumoulin M.
    • et al.

    Single-domain antibody fragments with high conformational stability.

    Protein Sci. Publ. Protein Soc. 2002; 11: 500-515

    • Hussack G.
    • et al.

    Engineered single-domain antibodies with high protease resistance and thermal stability.

    PLoS One. 2011; 6e28218

    • Harmsen M.M.
    • et al.

    Escherichia coli F4 fimbriae specific llama single-domain antibody fragments effectively inhibit bacterial adhesion in vitro but poorly protect against diarrhoea.

    Vet. Microbiol. 2005; 111: 89-98

    • Moonens K.
    • et al.

    Nanobody mediated inhibition of attachment of F18 fimbriae expressing Escherichia coli.

    PLoS One. 2014; 9e114691

    • Harmsen M.M.
    • et al.

    Enhancement of toxin- and virus-neutralizing capacity of single-domain antibody fragments by N-glycosylation.

    Appl. Microbiol. Biotechnol. 2009; 84: 1087-1094

    • Virdi V.
    • et al.

    Orally fed seeds producing designer IgAs protect weaned piglets against enterotoxigenic Escherichia coli infection.

    Proc. Natl. Acad. Sci. U. S. A. 2013; 110: 11809-11814

    • Virdi V.
    • et al.

    Yeast-secreted, dried and food-admixed monomeric IgA prevents gastrointestinal infection in a piglet model.

    Nat. Biotechnol. 2019; 37: 527-530

    • Fiil B.K.
    • et al.

    Orally active bivalent VHH construct prevents proliferation of F4+ enterotoxigenic Escherichia coli in weaned piglets.

    iScience. 2022; 25104003

    • Vanmarsenille C.
    • et al.

    Nanobodies targeting conserved epitopes on the major outer membrane protein of Campylobacter as potential tools for control of Campylobacter colonization.

    Vet. Res. 2017; 48: 86

    • Vanmarsenille C.
    • et al.

    In planta expression of nanobody-based designer chicken antibodies targeting Campylobacter.

    PLoS One. 2018; 13e0204222

    • Riazi A.
    • et al.

    Pentavalent single-domain antibodies reduce Campylobacter jejuni motility and colonization in chickens.

    PLoS One. 2013; 8e83928

    • Hussack G.
    • et al.

    Protease-resistant single-domain antibodies inhibit Campylobacter jejuni motility.

    Protein Eng. Des. Sel. 2014; 27: 191-198

    • Gonzales-Siles L.
    • Sjöling Å.

    The different ecological niches of enterotoxigenic Escherichia coli.

    Environ. Microbiol. 2016; 18: 741-751

    • Fairbrother J.M.
    • et al.

    Escherichia coli in postweaning diarrhea in pigs: an update on bacterial types, pathogenesis, and prevention strategies.

    Anim. Health Res. Rev. 2005; 6: 17-39

    • Luppi A.
    • et al.

    Prevalence of virulence factors in enterotoxigenic Escherichia coli isolated from pigs with post-weaning diarrhoea in Europe.

    Porc. Health Manag. 2016; 2: 20

    • Crottet P.
    • Corthésy B.

    Secretory component delays the conversion of secretory IgA into antigen-binding competent F(ab′)2: a possible implication for mucosal defense.

    J. Immunol. 1998; 161: 5445-5453

    • Kaakoush N.O.
    • et al.

    Global epidemiology of Campylobacter infection.

    Clin. Microbiol. Rev. 2015; 28: 687-720

  • Ghahroudi, M.A. et al. National Research Council of Canada. Anti-Campylobacter jejuni antibodies and uses therefor, US9926363B2

  • Abnousi, H. et al. Novobind Livestock Therapeutics Inc. Antibodies against aquaculture disease-causing agents and uses thereof, WO2020008254A1

  • Abnousi, H. et al. Novobind Livestock Therapeutics Inc. Antibodies against disease causing agents of poultry and uses thereof, WO2020234642A1

  • Laustsen, A.H. et al. Bactolife Aps. Pathogen binding proteins, US20220119505A1

    • Arslan A.
    • et al.

    Bovine colostrum and its potential for human health and nutrition.

    Front. Nutr. 2021; 8651721

    • Kaplan M.
    • et al.

    Production of bovine colostrum for human consumption to improve health.

    Front. Pharmacol. 2022; 12796824

    • Playford R.J.
    • Weiser M.J.

    Bovine colostrum: its constituents and uses.

    Nutrients. 2021; 13: 265

    • Murray C.J.
    • et al.

    Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis.

    Lancet. 2022; 399: 629-655

    • World Health Organization

    WHO preferred product characteristics for vaccines against enterotoxigenic Escherichia coli.

    World Health Organization, 2021

    • Amcheslavsky A.
    • et al.

    Anti-CfaE nanobodies provide broad cross-protection against major pathogenic enterotoxigenic Escherichia coli strains, with implications for vaccine design.

    Sci. Rep. 2021; 11: 2751

    • Ruano-Gallego D.
    • et al.

    A nanobody targeting the translocated intimin receptor inhibits the attachment of enterohemorrhagic E. coli to human colonic mucosa.

    PLoS Pathog. 2019; 15e1008031

    • Lu Z.
    • et al.

    Nanobody-based bispecific neutralizer for Shiga toxin-producing E. coli.

    ACS Infect. Dis. 2022; 8: 321-329

    • Vega C.G.
    • et al.

    Recombinant monovalent llama-derived antibody fragments (VHH) to rotavirus VP6 protect neonatal gnotobiotic piglets against human rotavirus-induced diarrhea.

    PLoS Pathog. 2013; 9e1003334

    • Sarker S.A.
    • et al.

    Anti-rotavirus protein reduces stool output in infants with diarrhea: a randomized placebo-controlled trial.

    Gastroenterology. 2013; 145: 740-748

    • Maffey L.
    • et al.

    Anti-VP6 VHH: an experimental treatment for rotavirus A-associated disease.

    PLoS One. 2016; 11e0162351

    • Unger M.
    • et al.

    Selection of nanobodies that block the enzymatic and cytotoxic activities of the binary Clostridium difficile toxin CDT.

    Sci. Rep. 2015; 5: 7850

    • Schmidt D.J.
    • et al.

    A tetraspecific VHH-based neutralizing antibody modifies disease outcome in three animal models of Clostridium difficile infection.

    Clin. Vaccine Immunol. 2016; 23: 774-784

    • Yao G.
    • et al.

    A camelid single-domain antibody neutralizes botulinum neurotoxin A by blocking host receptor binding.

    Sci. Rep. 2017; 7: 7438

    • Ferrer-Miralles N.
    • Villaverde A.

    Bacterial cell factories for recombinant protein production; expanding the catalogue.

    Microb. Cell Factories. 2013; 12: 113

    • Wang M.
    • et al.

    Lactic acid bacteria as mucosal delivery vehicles: a realistic therapeutic option.

    Appl. Microbiol. Biotechnol. 2016; 100: 5691-5701

    • Cano-Garrido O.
    • et al.

    Lactic acid bacteria: reviewing the potential of a promising delivery live vector for biomedical purposes.

    Microb. Cell Factories. 2015; 14: 137

    • Günaydın G.
    • et al.

    Co-expression of anti-rotavirus proteins (llama VHH antibody fragments) in Lactobacillus: development and functionality of vectors containing two expression cassettes in tandem.

    PLoS One. 2014; 9e96409

    • Gangaiah D.
    • et al.

    Recombinant Limosilactobacillus (Lactobacillus) delivering nanobodies against Clostridium perfringens NetB and alpha toxin confers potential protection from necrotic enteritis.

    MicrobiologyOpen. 2022; 11e1270

    • Andersen K.K.
    • et al.

    Neutralization of Clostridium difficile toxin B mediated by engineered Lactobacilli that produce single-domain antibodies.

    Infect. Immun. 2016; 84: 395-406

    • Álvarez B.
    • et al.

    An exopolysaccharide-deficient mutant of Lactobacillus rhamnosus GG efficiently displays a protective llama antibody fragment against rotavirus on its surface.

    Appl. Environ. Microbiol. 2015; 81: 5784-5793

    • Liu Y.
    • Huang H.

    Expression of single-domain antibody in different systems.

    Appl. Microbiol. Biotechnol. 2018; 102: 539-551

    • Zimmermann J.
    • et al.

    Antibody expressing pea seeds as fodder for prevention of gastrointestinal parasitic infections in chickens.

    BMC Biotechnol. 2009; 9: 79

    • Jester B.W.
    • et al.

    Development of spirulina for the manufacture and oral delivery of protein therapeutics.

    Nat. Biotechnol. 2022; 40: 956-964

    • Saberianfar R.
    • et al.

    Plant-produced chimeric VHH–sIgA against enterohemorrhagic E. coli intimin shows cross-serotype inhibition of bacterial adhesion to epithelial cells.

    Front. Plant Sci. 2019; 10: 270

    • Shanmugaraj B.
    • et al.

    Plant molecular farming: a viable platform for recombinant biopharmaceutical production.

    Plants. 2020; 9: 842

    • De Meyer T.
    • et al.

    Comparison of VHH-Fc antibody production in Arabidopsis thaliana, Nicotiana benthamiana and Pichia pastoris.

    Plant Biotechnol. J. 2015; 13: 938-947

    • Lessard P.A.
    • et al.

    Improved performance of Eimeria-infected chickens fed corn expressing a single-domain antibody against interleukin-10.

    Nat. Food. 2020; 1: 119-126

    • Tokuhara D.
    • et al.

    Rice-based oral antibody fragment prophylaxis and therapy against rotavirus infection.

    J. Clin. Invest. 2013; 123: 3829-3838

    • Sasou A.
    • et al.

    Development of antibody-fragment-producing rice for neutralization of human norovirus.

    Front. Plant Sci. 2021; 12639953

    • Burnett M.J.B.
    • Burnett A.C.

    Therapeutic recombinant protein production in plants: challenges and opportunities.

    Plants People Planet. 2020; 2: 121-132

    • Boune S.
    • et al.

    Principles of N-linked glycosylation variations of IgG-based therapeutics: pharmacokinetic and functional considerations.

    Antibodies. 2020; 9: 22

    • Mizukami M.
    • et al.

    Highly efficient production of VHH antibody fragments in Brevibacillus choshinensis expression system.

    Protein Expr. Purif. 2015; 105: 23-32

    • Muyldermans S.

    A guide to: generation and design of nanobodies.

    FEBS J. 2021; 288: 2084-2102

    • Ledsgaard L.
    • et al.

    Advances in antibody phage display technology.

    Drug Discov. Today. 2022; 27: 2151-2169

    • Pellis M.
    • et al.

    A bacterial-two-hybrid selection system for one-step isolation of intracellularly functional nanobodies.

    Arch. Biochem. Biophys. 2012; 526: 114-123

    • Kunz P.
    • et al.

    Nanobody stability engineering by employing the ΔTm shift; a comparison with apparent rate constants of heat-induced aggregation.

    Protein Eng. Des. Sel. 2019; 32: 241-249

    • Hagihara Y.
    • et al.

    Stabilization of an immunoglobulin fold domain by an engineered disulfide bond at the buried hydrophobic region.

    J. Biol. Chem. 2007; 282: 36489-36495

    • Saerens D.
    • et al.

    Disulfide bond introduction for general stabilization of immunoglobulin heavy-chain variable domains.

    J. Mol. Biol. 2008; 377: 478-488

    • Van de Wiele T.
    • et al.

    The simulator of the human intestinal microbial ecosystem (SHIME®).

    in: Verhoeckx K. The Impact of Food Bioactives on Health: In Vitro and Ex Vivo Models. Springer, 2015: 305-317

    • Minekus M.

    The TNO gastro-intestinal model (TIM).

    in: Verhoeckx K. The Impact of Food Bioactives on Health: In Vitro and Ex Vivo Models. Springer Open, 2015: 37-46

    • Brodkorb A.
    • et al.

    INFOGEST static in vitro simulation of gastrointestinal food digestion.

    Nat. Protoc. 2019; 14: 991-1014

    • Hornbuckle W.E.
    • et al.

    Gastrointestinal function.

    in: Kaneko J. Clinical Biochemistry of Domestic Animals. 6th edn. 2008: 413-457

    • Baliga S.
    • et al.

    Salivary pH: a diagnostic biomarker.

    J. Indian Soc. Periodontol. 2013; 17: 461-465

    • Dressman J.B.
    • et al.

    Estimating drug solubility in the gastrointestinal tract.

    Adv. Drug Deliv. Rev. 2007; 59: 591-602

    • Dingus J.G.
    • et al.

    A general approach for stabilizing nanobodies for intracellular expression.

    eLife. 2022; 11e68253

    • Liu X.
    • et al.

    Preparation of a nanobody specific to dectin 1 and its anti-inflammatory effects on fungal keratitis.

    Int. J. Nanomedicine. 2022; 17: 537-551

    • Holmes A.H.
    • et al.

    Understanding the mechanisms and drivers of antimicrobial resistance.

    Lancet. 2016; 387: 176-187

    • Yang L.
    • et al.

    Distinct increase in antimicrobial resistance genes among Escherichia coli during 50 years of antimicrobial use in livestock production in China.

    Nat. Food. 2022; 3: 197-205

    • Wright G.D.

    Molecular mechanisms of antibiotic resistance.

    Chem. Commun. 2011; 47: 4055-4061

    • Uchil R.R.
    • et al.

    Strategies to combat antimicrobial resistance.

    J. Clin. Diagn. Res. 2014; 8: ME01-ME04

    • Diard M.
    • Hardt W.-D.

    Evolution of bacterial virulence.

    FEMS Microbiol. Rev. 2017; 41: 679-697

    • Kitamoto S.
    • et al.

    Regulation of virulence: the rise and fall of gastrointestinal pathogens.

    J. Gastroenterol. 2016; 51: 195-205

    • Pakbin B.
    • et al.

    Virulence factors of enteric pathogenic Escherichia coli: a review.

    Int. J. Mol. Sci. 2021; 22: 9922

    • Kaper J.B.
    • et al.

    Pathogenic Escherichia coli.

    Nat. Rev. Microbiol. 2004; 2: 123-140

    • Rasko D.A.
    • Sperandio V.

    Anti-virulence strategies to combat bacteria-mediated disease.

    Nat. Rev. Drug Discov. 2010; 9: 117-128

  • Time Stamp:

    More from Biotechnology Trends